期刊文献+

基于支持向量机灵敏度的轧制过程厚度控制 被引量:1

Thickness control for rolling process by sensitivity based on support vector machine
原文传递
导出
摘要 利用支持向量机(SVM)建立非线性轧制力模型,由模型分别对各个输入变量进行偏微分解决轧制过程模型"代数环"问题,获得轧制过程出口厚度灵敏度系数,并建立基于灵敏度的轧制过程增量线性模型.由所建立基于灵敏度的轧制过程线性模型作为轧制过程内模估计实现内模控制,用于预测轧机出口厚度的变化,消除由传感器检测厚度所产生的纯滞后的不利影响,缩短过渡过程.仿真结果表明,提出的控制方法比PID控制具有更快响应速度和更高控制精度. A linearization method for the rolling process nonlinear model and the calculation for the sensitivity factors of a linearized model are obtained by the differential of the rolling force model based on support vector machine. It has an advantage without an "algebraic loop" in the rolling process. A controller is also proposed with the characteristic of the exit thickness predicted by the rolling process linearized model based on sensitivity factor as an internal model in place of the virtual exit thickness measured by the sensor with the disadvantages of a time delay. The comparisons of simulation results show that the proposed controller has a better control performance and higher precision than PID controller.
作者 黄宴委 王锋
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期542-546,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福州大学科技发展基金资助项目(2008-XQ-19)
关键词 轧制模型 支持向量机 灵敏度 厚度控制 rolling process model support vector machine(SVM) sensitivity thickness control
  • 相关文献

参考文献5

  • 1Zarate L E, Helman H. Determination of the thickness control parameters of the rolling process through the sensitivity method, using neural networks [ C ]//ISPE/IEE International Conference on CAD/CAM, Robotics and Factors of the Future. Brasilia: Is.n], 1999:537-542.
  • 2HuangYanwei,WuTihua,ZhaoJingyi,WangYiqun.SENSITIVITY ANALYSIS FOR ROLLING PROCESS BASED ON SUPPORT VECTOR MACHINE[J].Chinese Journal of Mechanical Engineering,2005,18(2):271-274. 被引量:3
  • 3Suykens J. Nonlinear modeling and support vector machine[ C ]//IEEE Instrumentation and Measurement Technology Conference. Budapest : [ s. n. ], 2001 : 287 - 294.
  • 4Vapnik V. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999,10(5) : 988 -999.
  • 5Huang Y W. Support vector regression - based internal model control [ J ]. Journal of Harbin Institute of Technology: English, 2007(3) : 411 -414.

二级参考文献5

  • 1Hua J X, Wang Z X. Process Control in Cold Tandem Rolling Mills. Beijing: Metallurgical Industry Process, 2000 (In Chinese).
  • 2Zarate L E, Helman H. Determination of the thickness control parameters of the rolling process through the sensitivity method, using neural networks.In: ISPE/IEE International Conference on CAD/CAM, Robotics and Factors of the Future, Brazil, 1999:537-542.
  • 3Suykens J. Nonlinear modeling and support vector machine. In: IEEE Instrumentation and Measurement Technology Conference Budapest, Hungary, 2001 : 287-294.
  • 4Vapnik V. The Nature of Statistical Learning Theory. New York: Springer Verlag, 1998.
  • 5Vapnik V. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999.

共引文献2

同被引文献5

  • 1Drezet P M L,Harrison R F.Support vector machines for system identification[C]//UKACC International Conference on con-trol 198,swansea:[s.n.],1998:688-692.
  • 2Shawe T J,Bartlett P L,Williamson R C,et al.Structural risk minimization over data-dependent hierarchies[J].IEEETransactions on Information Theory,1998,9(5):1 926-1 940.
  • 3Suykens J A K.Nonlinear modeling and support vector machines[C]//IEEE Instrumentation and Measurement Technology Con-ference.Budapest:IEEE,2001:287-294.
  • 4Johan A K Suykens,Vandewalle J.Sparse least squares support vector machine classifiers[C]//European Symposium on Arti-ficial Neural Networks.Belgium:[s.n.],2000:37-42.
  • 5魏立新,李兴强,李莹,杨景明.基于改进自适应遗传算法的冷连轧轧制规程优化设计[J].机械工程学报,2010,46(16):136-141. 被引量:13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部