摘要
研究了亚正规算子A∈B(H)的性质,给出了A∈B(H)的约化子空间的充分条件,并且讨论了其与正规算子的关系.得到了定理1设A∈B(H)是一个亚正规算子,则以下结论成立:(1)若0<p≤1,则A为p-亚正规算子.(2)对于每一个正整数n,An∈B(H)为1n-亚正规算子.(3)若0<p≤1,则|A|2p≥|A*|2p.(4)对每一个正整数n,有‖An‖=‖A‖n.定理2设A∈B(H)是一个亚正规算子,W是A的不变子空间,且A在W上的限制A|W为正规算子,则W是A的约化子空间.定理3设A∈B(H)是一个亚正规算子,且A*下有界,则A是可逆的,且A-1也为亚正规算子.
The properties of hyponormal operators are studied. Firstly, the sufficient condition of the re duced space of hyponomal operator A is given; secondly, the relation of the hyponormal operator to the normal operator is discussed.Theorem 1 Let A∈B(H). A is a hyponormal operator, then the followings hold: (1) If 0〈p≤1, then A is a p-hyponormal operator.(2) For every positive integer n, A^n∈B(H) is a 1/n-hyponormal operator. (3) If 0〈p≤1, then |A|^2p≥|A^*|^2p (4) For every positive integer n, we have ||A^n||=||A||^n. Theorem 2 Let A∈B(H). A is a hyponormal operator,W is an invariant subspaces of A and A|W is normal, then W is a reduced subspace of A. Theorem 3 Let A ∈ B(H). A is a hyponormal operator, A^* is bounded below, then A is invertible and A^-1 is hyponormal.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第8期153-156,共4页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(10571113)
陕西科技大学自选科研项目(ZX07-31)
关键词
正规算子
p-亚正规算子
紧算子
点谱
normal operator
p-hyponormal operator
compact operator
point spectrum