期刊文献+

不规则区域热传导问题无网格Petrov-Galerkin方法的数值模拟 被引量:7

NUMERICAL SIMULATION OF HEAT CONDUCTION PROBLEMS ON IRREGULAR DOMAIN BY USING MLPG METHOD
下载PDF
导出
摘要 无网格Petrov-Galerkin(MLPG)方法是一种真正的无网格方法,它利用节点计算待求量的插值函数,并利用高斯型求积公式在局部子域内进行数值积分。本文提出了一种有效的用于不规则区域的高斯型数值积分实施方法,通过数值研究表明:该方法能很好地处理不规则区域积分,其计算结果与基准解和FLUENT的计算结果吻合很好。 Meshless Local Petrov-Galerkin method (MLPG) is a truly meshless method, in which nodes are only used to construct the interpolation function and Gauss integration is applied on each local sub-domain. In this paper, numerical integration method of irregular domain is proposed. The numerical results show that the present method can deal with numerical integration of irregular domain efficiently and are in agreement with those of analytical solutions and the numerical results from FLUENT.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2009年第8期1350-1352,共3页 Journal of Engineering Thermophysics
基金 国家自然科学基金重点项目资助(No.50636050)
关键词 无网格方法 不规则区域 数值积分 meshless method irregular domain numerical integration
  • 相关文献

参考文献8

  • 1Atluri SN, Zhu T. A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics. Corn- put. Mech., 1998, 22:117-127.
  • 2Atluri SN, Shen SP. The Meshless Lcoal Petorv-Galerkin Method. Encino (USA): Tech Science Press, 2002.
  • 3Atluri SN, Kim H, Cho JY. A Critical Assessment of the Truly Meshless Local Petrov-Galerkin(MLPG) and Local Boundary Integral Equation(LBIE) Methods. Comput. Mech., 1999, 24:348-372.
  • 4Dolbow J, Belytschko T. Numerical Integration of the Galerkin Weak Form in Meshfree Methods. Comput. Mech., 1999, 33:219-230.
  • 5De S, Bathe KJ. The Method of Finite Spheres. Computational Mechanics, 2000, 25:329-345.
  • 6Liu GR. Mesh Free Methods: Moving Beynod the Finite Element Method. Boca Raton (USA): CRC Press, 2003.
  • 7Necati-Ozisik M. Heat Conduction. New York: Wiley, 1980.
  • 8成昌锐,胡延东,赵长颖,王秋旺,陶文铨.导热泥强化传热作用的数值模拟[J].工程热物理学报,2001,22(1):101-103. 被引量:1

二级参考文献1

  • 1陶文铨,数值传热学,1988年

同被引文献60

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部