期刊文献+

基于FPGA的椭圆曲线点乘算法设计与实现 被引量:8

Improvement and implementation of the algorithm design of elliptic curve dot product based on GF (2^n)
下载PDF
导出
摘要 椭圆曲线密码体制的核心是椭圆曲线点乘算法,点乘算法决定了密码体制的速度和需要的硬件资源,所以本文对点乘算法进行研究.在对经典的点乘算法及其底层二进制乘法算法进行分析基础上,重点对椭圆曲线加密点乘算法和底层有限域乘法进行了改进,并利用VHDL对点乘算法各核心模块进行设计,最后利用FPGA实现了整个点乘运算.本文对改进后的椭圆曲线加密系统进行了实验仿真测试,主要对设计进行仿真验证和综合,结果证明改进后的算法能够使整个点乘运算速度得到提高,可应用于信息安全与保密通信领域. Point multiplication algorithm is a key issue in Elliptic Curve Cryptography (ECC), as it determines the speed and the required hardware resources of the cipher system, so this paper carries out a research on this algorithm. Based on the analysis of classical point multiplication algorithm and its binary multiplication, this paper emphatically makes an improvement on the encrypted point multiplication algorithm and the subjacent multiplication operations of elliptic curve encryption. Then, we use VHDL to design each core module, and finally realize the whole point multiplication algorithm. At last, the concerned experimental simulation of ECC system, especially the simulation and synthesis of the design is carried out and the results show that the improved algorithm can perfectly speed up the point multiplication algorithm, thus, can be applied to the information security and secure communication fields.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第7期1546-1551,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(No.60672011)资助项目
关键词 椭圆曲线 点乘 有限域乘法 FPGA elliptic curve point multiplication finite field multiplication FPGA
  • 相关文献

参考文献11

  • 1KOBLITZ N. Elliptic curve cryptosystems [ J ]. Mathematics of Computation, 1987,48(177) :203-208.
  • 2MILLER V S. Use of elliptic curves in cryptosystems [ J]. Advances in Crypto'55. Lecture Notes in Computer Science. Spring-Verlag Berlin, 1985:417426.
  • 3CIET M, JOYE M, LAUTER K. Trading inversions for multiplications in elliptic curve cryptography [ J ]. Designs, Codes and Cryptography, 2006,39 (2) : 189-20.
  • 4SAKAI Y, SAKURAI K. Efficient scalar multiplications on elliptic curves with direct computer actions of several doublings[ J ]. IEICE Trans on Fundamentals, 2001.
  • 5HANKERSON D, HERNANDEZ J L, MENEZESA. Software implementation of elliptic curve cryptography over binary[ C ]. Proc of the 2nd International Workshop on Cryptographic Hardware and Embedded Systems. London : Springer Verlag, 1999 : 1-2.
  • 6AYDOS M, YANIK T, KOC C K. High-speed imple- mentation of an ECC-based wireless authentication proto- col on an ARM micro-processor [ J ]. IEEE Proceedings on Communications, 2001,148(5 ) :273-279.
  • 7杨盛光,王晓蕾,刘聪,高明伦.RSA算法的硬件实现[J].仪器仪表学报,2003,24(z2):313-316. 被引量:2
  • 8王健,蒋安平,盛世敏.椭圆曲线加密体制的双有限域算法及其FPGA实现[J].北京大学学报(自然科学版),2008,44(6):871-876. 被引量:5
  • 9曾晓洋,周晓方,沈泊,李文宏,陈超,章倩苓.参数可选的高速椭圆曲线密码专用芯片的VLSI实现[J].通信学报,2003,24(9):35-41. 被引量:13
  • 10杨先文,李峥.基于GF(2^n)上椭圆曲线标量乘的快速实现[J].计算机工程,2007,33(24):175-176. 被引量:2

二级参考文献29

共引文献17

同被引文献70

引证文献8

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部