期刊文献+

扶手椅型石墨纳米带的双空位缺陷效应研究 被引量:8

The divacancy-defect effect of armchair graphene nanoribbons
原文传递
导出
摘要 采用基于密度泛函理论的第一性原理电子结构和输运性质计算,研究了扶手椅型石墨纳米带(具有锯齿边缘)的双空位缺陷效应.研究发现:双空位缺陷的存在并没有改变石墨纳米带的金属特性,但改变了费米面附近的能带结构.同时,双空位缺陷的取向对石墨纳米带的输运性质有很重要的影响.对于奇数宽度的纳米带,斜向双空位缺陷使得石墨带导电性能减弱,而垂直双空位能基本保留原有的线性伏安特性,导电性能降低较少;对于偶数宽度的纳米带,斜向双空位缺陷会使石墨带导电性能明显增强,而垂直双空位缺陷则具有完整石墨带的输运性质. By using first-principles electronic structure and transport calculations based upon the density functional theory, we have studied the divacancy-defect effect of armchair graphene nanoribbons with zigzag edges. It is shown that the existence of 585 divacancy defects do not change the metallic characteristics of graphene nanoribbon, while changing the energy band structures near the Fermi energy level. Moreover, the spatial orientations of the divacancy defects have obvious effect on the transport properties of armchair graphene nanoribbons: for armchair graphene nanoribbons with odd width, slanting divacancies defects weaken conducting performace of graphene nanoribbons, while graphene nanoribbons with vertical divacancies defects basically remain linear I-V characteristics and little decrease in conducting capacity;For armchair graphene nanoribbons with even width, inclined divacancy defects increase the conducting property of graphene nanoribbous, while graphene nanoribbons with vertical divacancy defects have I-V characteristics of the perfect graphene nanoribbons.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第8期5640-5644,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50504017) 湖南省自然科学基金(批准号:07JJ3102) 中南大学理科发展基金(批准号:08SDF02)资助的课题~~
关键词 石墨纳米带 585双空位缺陷 电子结构 输运性质 graphene nanoribbons, 585 divacancies defects, electronic structure, transport properties
  • 相关文献

参考文献16

  • 1Wang J J,Zhu M Y,Outlaw R A,Zhao X,Manos D M,Holloway B C 2004 Appl.Phys.Lett.85 1265.
  • 2Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva I V,Firsov A A 2004 Science 306 666.
  • 3Zhang Y B,Tan Y W,Horst L,Philip K 2005 Nature 438 201.
  • 4Berger C,Song Z,Li X B,Wu X S,Brown N,Didier M,Li T B,Joanna H,Alexei N,Edward H C,Phillip N,de Heer W A 2006 Science 312 1191.
  • 5Yan Q M,Huang B,Yu J,Zheng F W,Zang J,Wu J,Gu B L,Liu F,Duan W H 2007 Nano Lett.7 1469.
  • 6Ouyang F P,Huang B,Li Z Y,Xiao J,Wang H Y,Xu H 2008 J.Phys.Chem.C 112 12003.
  • 7Zhang Z X,Zhang G M,Du M,Jin X X,Hou S M,Sun J P,Gu Z N,Zhao X Y,Liu W M,Wu J L,Xue Z Q 2002 Chin.Phys.11 804.
  • 8Cao J X,Yan X H,Xiao Y,Ding J W 2003 Chin.Phys.12 1440.
  • 9Ayako H,Kazu S,Alexandre G,Koki U,Sumio I 2004 Nature 430 870.
  • 10Rodrigo G A,Fazzio A,Alex A,Frederico D N,Silva A J 2007 Nano Lett.7 2459.

二级参考文献37

  • 1Wang J J, Zhu M Y, Outlaw R A, Zhao X, Manos D M, Holloway B C 2004 Appl. Phys. Lett. 85 1265
  • 2Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
  • 3Zhang Y B, Joshua P, William V, Philip K 2005 Appl. Phys. Lett. 86 073104
  • 4Zhang Y B, Tan Y W 1, Horst L, Philip K 2005 Nature 438 201
  • 5Novoselov K S, Jiang D, Schedin F, Booth T J , Khotkevich V, Morozov S V, C, eim A K 2005 Proc. Natl. Acad. Sci. 102 10451
  • 6Berger C, Song Z, LiXB, WuXS, Brown N, Didier M, LiTB, Joanna H, Alexei N, Edward H C, Phillip N, 1 Walt A de Heer 2006 Science 312 1191
  • 7Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469
  • 8Chen Z, Lin Y M, Rooks M J, Avouris P 2007 cond-mat/0701599
  • 9Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Leu. 98 206805
  • 10Zhang Z X, Zhang G M, Du M, Jin X X, Hou S M, Sun J P, Gu Z N, Zhao X Y ,Liu W M, Wu J L, Xue Z Q 2002 Chin. Phys. 11 804

共引文献37

同被引文献67

  • 1Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1):15-50.
  • 2Kresse G, Furthmaller J. Efficient iterative schemes for ab initio total-energy calculations using a plane- wave basis set[J]. Physical Review: B, 1996, 54(16): 11169-11186.
  • 3Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review: B, 1999, 59(3):1758-1775.
  • 4Perdew J, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
  • 5Katsunori Wakabayashi, Mitsutaka Fujita, Hiroshi Aji- ki, et al. Electronic and magnetic properties of anographite ribbons[J]. Physical Review: B, 1999, 59 (12) : 8271-8282.
  • 6Son Y W, Cohen M L, Louie S G. Energy Gaps in Graphene Nanoribbons[J]. Physical Review Letters, 2006, 97 (21) :2168031-2168034.
  • 7Pisani L, Chan J A, Montanari B, et al. Electronic structure and magnetic properties of graphitic ribbons[J]. Physical Review:B, 2007, 75(6):0644181-0644189.
  • 8Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence[J]. Physical Review :B, 1996, 54 (24) : 17954-17961.
  • 9Miyamoto Y, Nakada K, Fujita M. First-principles study of edge states of H-terminated graphitic ribbons [J]. Physical Review.. B, 1999, 59(15):9858-9861.
  • 10Amorim R G, Fazzio A, Antonelli A, et al. Divacancies in Graphene and Carbon Nanotubes[J]. Nano Letters, 2007, 7(8) :2459-2462.

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部