期刊文献+

奇异情况下两个二次曲面间的求交 被引量:1

Computing the Singular Intersection Curves between Two Quadric Surfaces
下载PDF
导出
摘要 曲面求交是几何造型系统的核心之一,奇异情况下求交算法的稳定性直接关系到后续的布尔运算乃至整个系统的稳定性.提出2种二次曲面间对应特征多项式有重根情形下鲁棒的求交算法.首先给出精确求解特征多项式重根的方法,若交线中存在奇异交点,则给出奇异交点关于特征多项式重根的显式表达式,从而稳定地求解出对应的奇异交点;同时给出一种交曲线有理参数化的构造性方法,可以弥补Farouki相应有理参数化方法中的缺陷.最后通过实例进一步说明了文中算法的求解稳定性及有理参数化的构造性方法的实用性. Surface intersection problem is one of the key problems in the geometric modeling system. The robustness of the intersection algorithms in singular cases is very important to the stability of the whole modeling system. This paper presents a robust intersection algorithm between two quadric surfaces when the corresponding characteristic polynomial has a multiple root. Firstly, a method is given to solve the multiple root of the characteristic polynomial accurately. Secondly, it provides an explicit formula of the positions of the singular points on the intersection curves. The formula only depends on the multiple root of the characteristic polynomial and the singular points could be robustly solved. A constructive rational parameterization method is also presented, which works in the cases when the Farouki's rational parameterization method may fail. Examples illustrate the robustness of intersection calculation and the effectiveness of constructive rational parameterization method.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第8期1066-1069,1073,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展计划项目(2004CB318000 2004CB719403) 国家自然科学基金(60803076) 浙江大学CAD&CG国家重点实验室开放课题(A0804)
关键词 二次曲面求交 有理参数化 奇异交点显式表达式 quadric surface intersection rational parameterization explicit formula of singular intersection point
  • 相关文献

参考文献14

  • 1Perram J W, Rasmussen J, Praestaard E, et al. Ellipsoid contact potential: theory and relation to overlap potentials [J]. Physical ReviewE, 1996, 54(6): 6565-6572.
  • 2Berberich E, Hemmer M, Kettner L, et al. An exact, complete and effieient implementation for computing planar maps of quadric intersection curves [C] //Proceedings of ACM Symposium on Computational Geometry, Pisa, 2005: 99-106.
  • 3Mourrain B, Tecourt J P, Teillaud M. On the computation of an arrangement of quadrics in 3D [J]. Computational Geometry, 2005, 30(2): 145-164.
  • 4Levin J. A parametric algorithm for drawing pictures of solid objects composed of quadrics surfaces [J]. Communications of The ACM, 1976, 19(10): 555-563.
  • 5Miller J R, Goldman R N. Geometric algorithms for detecting and calculating all conic sections in the intersection of any two natural quadric surfaces [J]. Graphical Models and Image Processing, 1995, 57(1): 55-66.
  • 6Rimon E, Boyd S P. Obstacle collision detection using best ellipsoid fit [J]. Journal of Intelligent and Robotic Systems, 1997, 18(2): 105-126.
  • 7Farouki R T, Neff C A, O'connor M A. Automatic parsing of degenerate quadric surface intersections [J]. ACM Transactions on Graphics, 1989, 8(3) : 174-203.
  • 8Wang W P, Goldman R, Tu C H. Enhancing Levin's method for computing quadric-surface intersections [J]. Computer Aided Geometric Design, 2003, 20(7): 401-422.
  • 9Tu C H, Wang W P, Mourrain B, etal. Signature sequence of intersection curve of two quadrics for exact morphological classification [R]. Hong Kong: Hong Kong University, 2005.
  • 10陈小雕,雍俊海,郑国勤,孙家广.圆环面/球面求交算法[J].计算机辅助设计与图形学学报,2005,17(6):1202-1206. 被引量:15

二级参考文献10

  • 1Pratt M, Geisow A. Surface/Surface Intersection Problems[M]. In: Gregory J A, ed. The Mathematics of Surfaces Ⅰ ,Oxford: Clarendon Press, 1986. 117~142
  • 2Patrikalakis N. Surface-to-surface intersections [J]. IEEE Computer Graphics Application, 1993, 13(1): 89~ 95
  • 3Levin J. A parametric algorithm for drawing pictures of solid objects composed of quadric surfaces [J]. Communications of the ACM, 1976, 19(10): 555~563
  • 4Farouki R, Neff C, O' Connor M. Automatic parsing of degenerate quadric-surface intersections [J ]. ACM Transactions on Graphics, 1989, 8(3): 174~203
  • 5Miller J. Geometric approaches to nonplanar quadric surfaces intersection curves [J]. ACM Transactions on Graphics, 1987,6(4): 274~307
  • 6Miller J, Goldman R. Geometric algorithms for detecting and calculating all conic sections in the intersection of any two natural quadric surfaces [J]. Graphical Models and Image Processing,1995, 57(1): 55~66
  • 7Peigl L. Constructive method of interscting natural quadrics represented in trimmed surface form [J]. Computer-Aided Design, 1989, 21(4): 201~212
  • 8Sarraga R. Algebraic methods for intersections of quadric surfaces in GMSOLID [J]. Computer Vision, Graphics and Image Processing, 1983, 22(2): 222~238
  • 9Kim K, Kim M S. Torus/sphere intersection based on a configuration space approach [J]. Graphical Models and Image Processing, 1998, 60(1): 77~92
  • 10林军呈,唐敏,董金祥.运动曲面求交优化算法[J].计算机辅助设计与图形学学报,2003,15(7):886-892. 被引量:2

共引文献14

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部