期刊文献+

液剂视频序列中运动异物的模糊自适应分割

A Fuzzy Adaptive Segmentation Algorithm for Moving Impurity in Liquid Video Sequences
下载PDF
导出
摘要 运动异物的正确分割是实现液剂自动检测的关键.提出一种基于帧差图空间方差和方差梯度的液剂异物模糊自适应阈值分割算法.首先将4帧序列图像差分得到的2幅帧差图分为5×5的图像块,计算2幅帧差图对应图像块间的方差和方差梯度,并以两者的乘积构成新特征图;然后使用自适应阈值对新特征图进行运动异物分割和提取.为使阈值能够跟随图像块灰度变化,阈值的调整采用模糊推理依据方差和方差梯度变化自适应实现.实验及实际测试结果表明,该算法能够满足低对比度和局部光照变化的液剂异物实时检测要求,是一种实用有效的图像分割算法. The effective segmentation of moving impurity in liquid plays a key role in automatic detecting system. A fuzzy adaptive segmentation algorithm of moving impurity in liquid based on spatial block variance and its gradient is proposed. At first, two difference images from 4 consecutive frames are partitioned into 5 × 5 small blocks respectively, and then the homologous block variance and its gradient are computed, and their product is used as the block feature to construct a new image. After that, an adaptive thresholding is used to segment the new image. To cope with the changes of the block grey value, a fuzzy inference method is adopted to adjust the threshold adaptively according to the block variance and its gradient. The experimental and factual testing results show that the proposed algorithm is practical, effective, and can meet the demands of real-time detection of moving impurity in liquid
作者 段中兴 郭媛
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第8期1144-1148,1154,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(50575168) 陕西省教育厅自然科学专项基金(07JK281)
关键词 液剂异物 图像分割 方差 方差梯度 模糊自适应阈值 threshold impurity in liquid image segmentation variance variance gradient fuzzy adaptive
  • 相关文献

参考文献8

二级参考文献46

  • 1王春波,张卫东,张文渊,许晓鸣.复杂交通环境中车辆的视觉检测[J].上海交通大学学报,2000,34(12):1680-1682. 被引量:17
  • 2丁裕锋,马利庄,聂栋栋,刘军波.Gabor滤波器在指纹图像分割中的应用[J].中国图象图形学报(A辑),2004,9(9):1037-1041. 被引量:13
  • 3甘树坤,欧宗瑛,魏鸿磊.基于灰度特性的指纹图像分割算法[J].吉林化工学院学报,2006,23(1):68-71. 被引量:19
  • 4Nguyen H T, Worring M, Dev A. Detection of moving objects in video using a robust motion similarity measure [J]. IEEE Transactions on Image Processing, 2000, 9(1) : 137- 141.
  • 5Bors Adrian G, Pitas Ioannis. Prediction and tracking of moving objects in image sequence [J]. IEEE Transactions on Image Processing, 2000, 9(8) : 1441-1445.
  • 6Dubuisson M P, Jain A K. Contour extraction of moving objects in complex outdoor scenes [J]. International Journal of Computer Vision, 1995, 14(1) : 83-105.
  • 7Neri A, Colonnese S, Russo G, et al. Automatic moving object and background separation [J]. Signal Processing, 1998, 66(2): 219-232.
  • 8Mech R, Wolbom M. A noise robust method for 2D shape estimation of moving objects in video .sequences considering amoving camera [J]. Signal Processing, 1998, 66 (2) :203 -217.
  • 9Meier Thomas, Ngan King N. Automatic segmentation of moving objects for video object plane generation [J]. IEEE Transactions on Circuits and Systems for Video Technology,1998, 8(5): 525-538.
  • 10Denzler J,Paulus D.Active motion detection and object tracking[C] //Proceedings of the 1st International Conference on Image Processing,Austin,Texas,1994:635-639

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部