期刊文献+

基于梯度增强的新闻字幕分割算法 被引量:6

News Video Text Segmentation Algorithm Based on Gradient Reinforcement
下载PDF
导出
摘要 新闻字幕的分割在基于语义的新闻视频检索系统中具有重要的意义,为此提出一种基于梯度增强的新闻字幕分割算法.该算法使用图像多方向梯度的加权和代替图像的标准方差,通过各方向权值的调节加强某些方向的边缘信息,以提高分割效果.与一些经典的自适应阈值分割算法相比,该算法不仅能够保留大部分笔画,也能有效地减少断笔问题.基于光学文字识别的实验结果证明了文中算法的有效性. In the news video retrieval system important part. In this paper, an improved based on the semantics, text segmentation is an text segmentation algorithm based on gradient reinforcement is proposed for news video. Compared with the classical adaptive approaches, the standard deviation of a text image is replaced with the weighted gradient sum of a text image. The weights of special directions can be adjusted to enhance the edge of texts and get better segmentation results; most of the strokes can be reserved. The effect of our algorithm can also be proved by the optical character recognition results.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第8期1170-1174,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 北京市属市管高等学校人才强教计划
关键词 文本分割 梯度增强 光学文字识别 新闻视频 text segmentation gradient reinforcement optical character recognition news video
  • 相关文献

参考文献12

  • 1Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation [J]. Journal of Electronic Imaging, 2004, 13(1): 146-165.
  • 2Bernsen J. Dynamic thresholding of grey-level images [C] // Proceedings of the 8th International Conference on Pattern Recognition, Paris, 1986:1251-1255.
  • 3Niblaek W. An introduction to digital image processing [M]. New Jersey: Prentice Hall Press, 1985:115-116.
  • 4Sauvola J, Pietikainen M. Adaptive document image binarization [J]. Pattern Recognition, 2000, 33 (2) : 225- 236.
  • 5Rais N B, Hanif M S, Taj I A. Adaptive binarization method for document image analysis [C] //Proceedings of IEEE International Multi Topic Conference, Lahore, 2004: 61-66.
  • 6Xi Y, Chen Y B, Liao Q M degraded document images International Conference Recognition, Curitiba, 2007 A novel binarization system for [C] //Proceedings of the 9th on Document Analysis and , 287-291.
  • 7Oh W, Lindquist W B. Image thresholding by indicator kriging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(7): 590-602.
  • 8庄越挺,刘骏伟,吴飞,潘云鹤,张引.基于支持向量机的视频字幕自动定位与提取[J].计算机辅助设计与图形学学报,2002,14(8):750-753. 被引量:38
  • 9刘骏伟,庄越挺,吴飞.基于SVM和ICA的视频帧字幕自动定位与提取[J].中国图象图形学报(A辑),2003,8(11):1334-1340. 被引量:8
  • 10Otsu N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.

二级参考文献14

  • 1[1]Y Wang, Z Liu, J Huang. Multimedia content analysis using audio and visual information[J]. IEEE Signal Processing Magazine, 2000, 17(6):12~36
  • 2[2]R Lienhart, F Stuber. Automatic text recognition in digital videos[A]. In: Proceedings of ACM Multimedia, Boston, 1996.11~20
  • 3[3]Zhong Yu, Zhang Hongjiang, Jain Anil K. Automatic caption localization in compressed video[J]. Pattern Analysis and Machine Intelligence, 2000, 22(4):385~392
  • 4[4]V Vapnik. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995
  • 5[5]M Schmidt. Identifying speaker with support vector networks[A]. In: Proceedings of Interface'96, Sydney, 1996
  • 6[6]T Joachims. Text categorization with support vector machines: Learning with many relevant features[A]. In: Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, 1998.137~142
  • 7[7]Yuan Qi. Learning algorithms for video and audio processing: Independent component analysis and support vector machine based approaches[R].College Park: University of Maryland at College Park, LAMP-TR-056(CAR-TR-951), 2000
  • 8[8]Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: An application to face detection[A]. In: Proceedings of Computer Vision and Pattern Recognition, Puerto Rico, 1997.130~136
  • 9[9]C J C Burges. A tutorial on support vector machines for pattern recognition[J]. Data Mining, and Knowledge Discovery, 1998, 2(2):121~167
  • 10[10]T M Cover. Geometrical and statistical properties of systems and linear inequalities with applications in pattern recognition[J]. IEEE Transactions on Electronic Computers, 1965, 14(3):326~334

共引文献42

同被引文献55

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部