期刊文献+

两种复周期调制晶格中孤子的开关特性分析 被引量:1

Analysis of the Switching Characters of Soliton in Two Optical Lattices with Modulation of Multiple Periods
原文传递
导出
摘要 对提出的两种复周期Kerr非线性调制光晶格中的孤子开关特性进行了研究,并与单周期余弦型调制晶格的情形进行了比较。通过数值模拟,分析了3种不同模型对孤子脉冲能量的保持情况,以及注入相同孤子脉冲时,脉冲被晶格俘获前可穿越的晶格通道的数量。研究发现,当注入脉冲的能量范围相同时,3种模型中孤子的开关通道数有较大差别;而在穿越通道数相同的情况下,开关效应的响应时间却不相同。 Two multiple-period modulation optical lattices with Kerr-type nonlinear medium were proposed. The switching characters of soliton in these lattices were studied and compared with that of the single-period cosine-type modulation optical lattices. The stabilities of the energy of soliton pulse in all of these optical lattices was numerically analyzed, and the numbers of the channels which were traversed by soliton pulse were numerically calculated before the soliton pulse was trapped in the lattices channel. Within the same energy region, the numbers of switching channels of the soliton were obviously different. And for the same numbers of channels traversed, the response time were different.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第8期2270-2275,共6页 Acta Optica Sinica
基金 国家自然科学基金(10574058) 江苏省高校自然科学研究项目(08KJB510001) 宁波市自然科学基金 (2008A610001) 江苏大学科研基金(04JDG041)资助项目
关键词 非线性光学 光学晶格 空间孤子 开关效应 nonlinear optics optical lattices spatial soliton switch effect
  • 相关文献

参考文献22

  • 1刘金龙,陈金华,李海,旷卫民.强非局域非线性介质中的超高斯空间光孤子族[J].光学学报,2007,27(7):1261-1265. 被引量:9
  • 2任标,郭旗,兰胜,杨湘波.强非局域介质中多个空间孤子的相互作用[J].光学学报,2007,27(9):1668-1674. 被引量:4
  • 3王晓生,佘卫龙.光折变有机聚合物中的双色光空间孤子[J].光学学报,2004,24(4):507-511. 被引量:7
  • 4D.N.Christodoulides,F.Lederer,Y.Silberberg.Discretizing light behaviour in linear and nonlinear waveguide lattices[J].Nature,2003,424(6950):817-823.
  • 5G.P.Agrawal.Nonlinear Science at the Dawn of the 21st Century[M,].Berlin:Heidelberg Press,2000:195-211.
  • 6D.N.Christodoulides,R.I.Joseph.Discrete self-focusing in nonlinear arrays of coupled waveguides[J].Opt.Lett.,1988,13(9):794-796.
  • 7I.Tsopelas,Y.Kominis,K.Hizanidis.Soliton dynamics and interactions in dynamically photoinduced lattices[J].Phys.Rev.E,2006,74(3):036613.
  • 8D.Neshev,A.A.Sukhorukov,B.Hanna et al.Controlled generation and steering of spatial gap solitons[J].Phys.Rev.Lett.,2004,93(8):083905.
  • 9Y.V.Kartashov,V.A.Vysloukh,L.Torner.Surface gap solitons[J].Phys.Rev.Lett.,2006,96(7):073901.
  • 10W.H.Chen,Y.J.He,H.Z.Wang.Surface defect superlattice solitons[J].J.Opt.Soc.Am.B,2007,24(10):2584-2588.

二级参考文献51

共引文献14

同被引文献9

  • 1Xu Z Y, Kartashov Y V, Torner L. Soliton mobility in nonlocal optical lattices[J].Phys. Rev. Lett., 2005, 95(11): 113901-113904.
  • 2Zhou H, Fu X Q, Hu Y H, et al. Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice[J].J. Opt. Soc. Am. B, 2007, 24(9): 2208-2212.
  • 3Yang R, Wu X. Spatial soliton tunneling, compression and splitting[J].Opt. Expr., 2008, (22): 17759-17767.
  • 4Kartashov Y V, Torner L. Parametric amplification of soliton steering in optical lattices[J].Opt. Lett., 2004, 29(10): 1102-1104.
  • 5Kartashov Y V, Vysloukh V A, Torner L. Soliton control in fading optical lattices[J].Opt. Lett., 2006, 31(14): 2181-2183.
  • 6Kartashov Y V, Zelenina A S, Torner L. Spatial soliton switching in quasi-continuous optical arrays[J].Opt. Lett., 2004, 29(7): 766-768.
  • 7Wang C, Kevrekidis P G, Whitaker N, et al. Two-component nonlinear Schr?dinger models with a double-well potential[J].Physica D, 2008, 237: 2922-2932.
  • 8高洁,房丽敏,李华刚.横向非周期性调制Kerr介质中的空间光孤子[J].量子电子学报,2012,29(2):204-208. 被引量:2
  • 9靳海芹,易林,蔡泽彬.二维谐振子调制势中光束传输特性研究[J].量子电子学报,2013,30(3):323-329. 被引量:2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部