期刊文献+

对数变换与小波变换用于野外采集植物波谱降噪 被引量:2

FIELD COLLECTED PLANT SPECTRUM DENOISING BY LOGARITHM TRANSFORM AND WAVELET TRANSFORM
下载PDF
导出
摘要 地物波谱野外测试过程中常引入噪声.本文结合植物波谱测试原理,提出波谱噪声属于乘性复合噪声.经理论推导,又提出了对数变换与小波变换相结合的降噪方法.仿真降噪试验结果表明,空域相关算法最适合于光谱数据降噪,模极大法次之,阈值法则不适于该类噪声的消减.对野外采集植物波谱的处理结果表明,空域相关去噪法对1450nm附近的噪声去除能力较强,1800-1900nm强噪声则去噪效果不理想.原因在于波谱仪纪录精度有限,当理论比值远大于1时,能够准确记录下来;远小于1时记录值为0,从而在强噪声干扰波段出现较严重的系统误差,经小波降噪后被视作奇异点被保留下来.研究表明对数变换与小波变换相结合采用空域相关去噪对于含乘性复合噪声的光谱是可行的. The objects' spectrum is often contaminated by noise when it is collected in the open air. According to the principle of the spectrum collection, the noise was considered as one kind of multiplicative compound noise. By theoretical derivation, the combination of logarithm transform and wavelet transform was introduced into noise reduction. Multiplicative noise simulation test was carried out. And the results show that the spatial correlation algorithm is best suited for spectral data denoising, modulus maxima algorithm is inferior to it. Threshold shrinking rule is unsuitable for spectrum denoising. The wild plants spectrum were processed based on spatial correlation algorithm. Results show that the noise near 1450 nm in the spectrum is perfectly denoised, while near 1800 - 1900 nm strong noise can not be removed perfectly. The reason is the limited records accuracy of the spectrometer. When the theoretical ratio is far greater than 1, the spectrometer will accurately record them. While the theoretical ratio is far less than 1, the record will be 0. So serious system errors will be generated in strong noise band and will be retained after the wavelet transform was applied because they are considered as signal singularity. Experiments prove that spatial correlative filtering with the combination of logarithm transform and wavelet transform is feasible for multiplicative-noise-contaminated spectrum denoising.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第4期316-320,共5页 Journal of Infrared and Millimeter Waves
基金 国家"863"计划(2009AA12Z147) 国家自然科学基金(40842003) 山东省软科学(2007RKA071)资助项目
关键词 对数变换 小波变换 野外采集波谱 空域相关滤波 logarithm transform wavelet transform field collected spectrum spatial correlative filtering
  • 相关文献

参考文献10

  • 1Hatchell D C. Technical Guide, 4th ed. http ://www. asdi. com/tg_rev4 wev4_web, pdf, Analytical spectral devices (ASD) Inc. USA, 1999,18--24.
  • 2Mallat S. A Wavelet Tour of Signal Processing( 2nd Edition) [ M]. Beijing: China Machine Press. 2003,89--101.
  • 3沈渊婷,倪国强,徐大琦,蒋丽丽,贺金平.利用Hyperion短波红外高光谱数据勘探天然气的研究[J].红外与毫米波学报,2008,27(3):210-213. 被引量:18
  • 4周凤岐,遆小光,周军.基于平稳多小波变换的红外图像噪声抑制方法[J].红外与毫米波学报,2005,24(2):151-155. 被引量:12
  • 5周广柱,杨锋杰,王翠珍.Lifting transform via Savitsky-Golay filter predictor and application of denoising[J].Journal of Coal Science & Engineering(China),2006,12(2):66-69. 被引量:3
  • 6Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shirinkage[ J]. Biometrika, 1994,81:425---455.
  • 7Mallat S. A theory for multisolution signal decomposition: the wavelet representation [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989,11 (7) :674--693.
  • 8Mallat S, Hwang W L. Singularity detect ion and processing with wavelet [ J ]. IEEE Trans on IT, 1992,38 ( 2 ) : 617-- 643.
  • 9Witkin A P. Scale-space filtering[A]. Proc. 8th Int. Joint Conf. Art. Intell[C]. 1983:1019--1022.
  • 10Xu Y, Weaver J B, Healy D M, et al. Wavelet transform filters: a spatially selective noise filtration technique [ J]. IEEE Transforms on Image Processing, 1994,3 (6) :747-- 758.

二级参考文献24

  • 1王强,束炯,尹球.高光谱图像光谱域噪声检测与去除的DSGF方法[J].红外与毫米波学报,2006,25(1):29-32. 被引量:23
  • 2马艳华,王建宇,马德敏,舒嵘.一种用于光谱图像的基于邻域背景检测的矢量滤波器[J].红外与毫米波学报,2006,25(2):157-160. 被引量:3
  • 3Gilbert Strang, Vasily Strela. Short wavelets and matrix dilation equation[J]. IEEE Transactions on Signal Processing, 1995,43(1):108-115.
  • 4Strela V, Heller P N, Strang G, et al. The application of multiwavelet filterbanks to image processing[J]. IEEE Trans. Imaging processing, 1999,8(4):548-563.
  • 5Jie Liang, Thomas W. Parks. A translation-invariant wavelet representation algorithm with application[J]. IEEE Transactions on Signal Processing,1996,44(2):225-232.
  • 6Nason G P, Silverman B W. The Stationary Wavelet Transform and Some Statistical Applications[M]. Lecture notes in statistics. A. Antoniadis Ed. Berlin:Springer Verlag, 1995,281-299.
  • 7Strela V, Walden A T. Signal and image denoising via wavelet thresholding: orthogonal and biorthogonal, scalar and multiple wavelet transforms[R]. Imperial College, Statistics Section, Technical Report TR-98-01(1998).
  • 8Strela V. Multiawavelet: Theory and Application[D].Ph.D Thesis MIT, 1996.
  • 9Downie T R, Silverman B W. The discrete multiple wavelet transform and thresholding methods[J]. IEEE Trans. Signal Processing, 1998,46:2558-2561.
  • 10Coifman R, Donoho D. Translation-invariant de-noising[D]. Wavelets and Statisics, Springer lecture notes in statistics 103. New York: Springer-Verlag, 1994:125-150.

共引文献30

同被引文献26

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部