期刊文献+

用改进液相还原法制备炭载Pd催化剂 被引量:6

Pd/C catalysts Prepared with Improved Liquid Phase Reduction Method
下载PDF
导出
摘要 研究了用改进液相还原法制备用作直接甲酸燃料电池(DFAFC)的炭载Pd(Pd/C)阳极催化剂制备方法,研究发现在滴加还原剂NaBH4之前,在PdCl2溶液中滴加NaOH溶液后,制得的Pd/C催化剂中Pd粒子的平均粒径和相对结晶度均比不加NaOH的小。而且Pd粒子的平均粒径和相对结晶度与加入的NaOH溶液和PdCl2溶液的浓度比有关。在未加NaOH时制得的Pd/C催化剂中Pd粒子的平均粒径和相对结晶度分别为20.2 nm和6.29,当加入的NaOH溶液和PdCl2溶液的浓度比为10时得到的Pd粒子的平均粒径和相对结晶度适中,分别为6.7 nm和3.45,因此,制得的Pd/C催化剂对甲酸氧化的电催化活性和稳定性均要比其它NaOH溶液和PdCl2溶液的浓度比时制得的Pd/C催化剂要好。且该制备方法简单,具有潜在的应用前景。 The Pd/C catalyst as the anodic catalyst in the direct formic acid fuel cell(DFAFC) is prepared with the improved liquid phase reduction method,where Pd/C catalyst with small average size and relative crystalinity of the Pd particles can be prepared if suitable amounts of NaOH are added before the addition of NaBH4.The average size and relative crystalinity of Pd particles in the Pd/C catalyst prepared are related to the concentration ratio of NaOH and PdCl2.The average size and relative crystalinity of the Pd particles in the Pd/C catalyst without addition of NaOH are 20.2 nm and 6.29,respectively.When the concentration ratio of NaOH and PdCl2 is 10,the average size and relative crystalinity of Pd particles in the Pd/C catalyst are 6.7 nm and 3.45,respectively,which exhibits an excellent electrocatalytic activity and stability for the oxidation of formic acid.Because the improved liquid phase reduction method is simple,it may have the potential for practical applications.
出处 《应用化学》 CAS CSCD 北大核心 2009年第8期985-988,共4页 Chinese Journal of Applied Chemistry
基金 科技部"八六三"计划项目(2007AA05Z143 2007AA05Z159) 国家自然科学基金(20703043 20873065)资助项目
关键词 甲酸 直接甲酸燃料电池 炭载Pd催化剂 NAOH 液相还原法 formic acid direct formic acid fuel cell carbon supported Pd catalyst sodium hydroxide liquid phase reduction method
  • 相关文献

参考文献20

  • 1MAO Zong-Qiang(毛宗强),LU Tian-Hong(陆天虹),XING Wei(邢巍),SUN Gong-Quan(孙公权).Fuel Cell(燃料电池)[M].Beijing(北京):Chemical Industry Press(化学工业出版社),2005:212
  • 2Dillon R,Srinivasan S,Aricò A S,Antonucci V.J Power Sources[J],2004,127:112.
  • 3Rice C,Ha S,Masel R I,Waszczuk P,Wieckowski A,Barnard T.J Power Sources[J],2002,111:83.
  • 4Rhee Y W,Ha S,Rice C,Masel R I.J Power Sources[J],2003,117:35.
  • 5袁青云,唐亚文,周益明,刘长鹏,邢巍,陆天虹.甲酸作直接甲醇燃料电池替代燃料[J].应用化学,2005,22(9):929-932. 被引量:25
  • 6Zhu Y M,Zakia K,Masel R I.J Power Sources[J],2005,139:15.
  • 7Zhou W P,Lewera A,Larsen R,Masel R I,Bagus P S,Wieckowski A.J Phys Chem B[J],2006,110:13 393.
  • 8Zhang L L,Tang Y W,Bao J C,Lu T H,Li C.J Power Sources[J],2006,162:177.
  • 9Zhang L L,Lu T H,Bao J C,Tang Y W,Li C.Electrochem Comm[J],2006,8:1 625.
  • 10Capon A,Parsons R.Electroanal Chem Interfacial Eletronanal Chem[J],1973,44:239.

二级参考文献15

  • 1Hogarth M P,Hards G A. Platinum Metals Rev[J] ,1996,40:150.
  • 2Tricoli V. J Electrochem Soc[J] ,1998,145:3 798.
  • 3Narayanan S R,Vamos E,Surampudi S, et al. J Electrochem Soc[J] ,1997,144:4 195.
  • 4Lamy C,Lima A,Lerhun V, et al. Power Sources[J] ,2002,105:283.
  • 5Peled E,Duvdevani T,Aharon A, et al. Electrochem Solid-State Lett[ J] ,2001,4:A38.
  • 6Llorca M J,Feliu J M,Aldaz A, et al. J Electroanal Chem[J] ,1994,376:151.
  • 7Kita H,Lei H W. J Electroanal Chem[J] ,1995,388:167.
  • 8Lu G Q,Crown A,Wieckowski A. J Phys Chem[J] ,1999,B103:9 700.
  • 9Wolter O,Willsau J,Heitbaum J. J Electrochem Soc[J] ,1985,132:1 635.
  • 10Weber M,Wang J T,Wasmus S, et al. J Electrochem Soc[J] ,1996,143:L158.

共引文献25

同被引文献122

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部