期刊文献+

图像立体匹配研究进展 被引量:17

Advance in Image Stereo Matching
下载PDF
导出
摘要 图像的立体匹配一直是立体视觉的研究重点。首先简要介绍了立体匹配方法及其分类,归纳了立体匹配中的各种约束条件和相似性测度函数;然后总结了局部匹配算法和全局匹配算法的特点,并结合对象的三维重建问题重点分析了全局匹配算法中的动态规划算法、图割法和置信度传播算法;最后对立体匹配研究面临的主要问题给出了一些建议。 Image stereo matching is the most important problem in stereo vision. Stereo matching and its categories are briefly introduced. After the matching constraints and measurements of similarity are concluded, some local matching algorithms and global matching algorithms are also analyzed. Considering object 3D reconstruction problem, three typical algorithms, such as dynamic programming algorithm, graph cuts algorithm and belief propagation algorithm are addressed in detail. Finally, some major problems in stereo matching are pointed out and some suggestions are given.
出处 《测控技术》 CSCD 北大核心 2009年第8期1-5,10,共6页 Measurement & Control Technology
基金 国家高技术研究发展计划863(2007AA704310)
关键词 立体匹配 匹配约束 相似性测度 stereo matching matching constraint measurement of similarity
  • 相关文献

参考文献13

  • 1Brown M Z, Burschka D, Hager G D. Advances in computational stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2003, 25 ( 8 ) :993 - 1008.
  • 2Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence ,2001,23 ( 11 ) : 1222 - 1239.
  • 3Tappen M F, Freeman W T. Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters [ A ]. Proceedings of 9^th IEEE International Conference on Computer Vision [ C ]. Nice, France, 2003-10: 900 - 906.
  • 4Sun J,Zheng N N, Shum H Y. Stereo matching using belief propagation[ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence ,2003,25 ( 7 ) :787 - 800.
  • 5Birchfield S, Tomasi C. Depth discontinuities by pixel-to-pixel stereo[ A]. Proceedings of 6^th International Conference on Computer Vision [ C ]. Bombay, India, 1998-01 : 1073 - 1080.
  • 6Kanada T, Okutomi M. A stereo matching algorithm with an adaptive window: theroy and experiment [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16 (9) :920-932.
  • 7Ohta Y, Kanada T. Stereo by intra-and inter-scanline search using dynamic programming [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1985,7 (2) : 139 - 154.
  • 8Be|humeur P N. A Bayesian approach to binocular stereopsis [ J ]. International Journal of Computer Vision, 1996,19 (3) : 237 - 260.
  • 9Bobick A F,Intille S S. Large occlusion stereo[J]. International Journal of Computer Vision,1999,33 (3) :181 -200.
  • 10Sung M C, Lee S H, Cho N IK. Stereo matching using multidirectional dynamic programming [ A ]. 2006 International Symposium on Intelligent Signal Processing and Communication [ C ]. Tottori, Japan,2006:697 - 700.

二级参考文献20

  • 1顾征,苏显渝.采用邻域差值特征模板的立体匹配方法[J].光电工程,2005,32(10):39-42. 被引量:6
  • 2陈君,戚飞虎.一种新的基于特征点的立体匹配算法[J].中国图象图形学报,2005,10(11):1411-1414. 被引量:7
  • 3冈萨雷斯.数字图像处理(第二版)[M].北京:电子工业出版社,2003..
  • 4马颂德 张正友.计算机视觉[M].北京:科学出版社,1998.72-80.
  • 5Scharstein D,Szeliski R.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J].International Journal on Computer Vision,2002,47(1/2/3):7-42.
  • 6Kolmogorov V,Zabih R.Computing visual correspondence with occlusions using graph cuts[A].IEEE International Conference on Computer Vision[C].Vancouver:IEEE Computer Society,2001.508-512.
  • 7Sun J,Li Y,Kang S B,Shum H Y.Symmetric stereo matching for occlusion handling[A].IEEE International Conference on Computer Vision and Pattern Recognition[C].San Diego:IEEE Computer Society,2005.556-571.
  • 8Veksler O.Stereo correspondence by dynamic programming on a tree[A].IEEE International Conference on Computer Vision and Pattern Recognition[C].San Diego:IEEE Computer Society,2005.384-390.
  • 9Tao H,Sawhney H S,Kumar R.A global matching framework for stereo computation[A].IEEE International Conference onComputer Vision[C].Vancouver:IEEE Computer Society,2001.532-539.
  • 10Hong L,Chen G.Segment-based stereo matching using graph cuts[A].IEEE International Conference on Computer Vision and Pattern Recognition[C].Washington:IEEE Computer Society,2004.74-81.

共引文献12

同被引文献145

引证文献17

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部