期刊文献+

多线性奇异积分算子的加权模不等式

Weighted Norm Inequalities for the Maximal Multilinear Singular Integral Operator
下载PDF
导出
摘要 建立了多线性Calderón-Zygmund奇异积分算子及其相关极大算子的交换子的一些加权Lp估计. In this paper, the authors establish some weighted L^p estimates for the maximal operator associated with muhilinear Calderon-Zygmund singular integrals.
出处 《河南科学》 2009年第8期887-892,共6页 Henan Science
基金 河南省教育厅自然科学基金资助(2007110006)
关键词 多线性奇异积分算子 光滑条件 尺寸条件 加权模不等式 multilinear Calderon-Zygmund operator regularity condition: size condition: weighted norm inequalities
  • 相关文献

参考文献14

  • 1Coifman R R, Meyer Y. On commutators of singular integrals and bilinear singular integrals[J]. Trans Amer Math Soc, 1975,212: 315-331.
  • 2Coifman R R, Meyer Y. Nonlinear harmonic analysis, operator theory and P. D. E., in "Beijing Lectures in harmonic analysis" (Beijing, 1984) [M]. Ann Math Stud 112, Princeton, NJ: Princeton University Press, 1986: 3-45.
  • 3Grafakos L, Torres R H. Muhilinear Calderon-Zygmund theory [J]. Adv In Math, 2002, 165: 124-164.
  • 4Grafakos L, Torres R H. Maximal operators and weighted norm inequalities for multilinear singular integrals [ J]. Indiana Univ Math J, 2002,51 : 1261-1276.
  • 5Lerner A K, Ombrosi S, Perez C, et al. New maximal functions and multiple weights for the muhilinear Calderon-Zygmund theory, preprint [J]. Adv in Math, 2009, 220: 1222-1264.
  • 6Grafakos L, Kahon N. Multilinear Calderon-Zygmund operators on Hardy spaces[J]. Collet Math, 2001,52: 169-179.
  • 7Grafakos L, Torres R H. On multilinear singular integrals of Calder6n-Zygmund type 03. Publ Mat, 2002, Extra: 57-91.
  • 8Perez C, Torres R H. Sharp maximal function estimates for multilinear singular integrals [J] . Contemp Math, 2003,320: 323-331.
  • 9Hu Guoen, Shi Xianliang, Zhang Qihui. Weighted norm inequalities for the maximal singular integral operators on spaces of homogeneous type [J]. J Math Anal Appl, 2007, 336: 1-17.
  • 10Lerner A K. Weighted norm inequalities for the local sharp maximal function[J]. J Fourier Anal Appl, 2004, 10: 645-674.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部