摘要
针对紧致度量空间上的连续自映射,本文给出了拓扑熵的一种新的定义,并讨论了这种拓扑熵的一些重要性质。证明了该拓扑熵与度量的选取无关,是拓扑共轭不变量,该拓扑熵对迭代系统具有可加性。同时,就系统在非游荡点集上的限制的这种拓扑熵与原系统的熵之间的关系进行了讨论,得到二者之间的一个不等式关系。
This paper introduces a new concept of topological entropy of a continuous elf-mapping on a compact metric space, and discusses some inportant properties of it. The following results are proved. The new topological entropy is independent of the choice of the metric and it is an invariant of topological conjugacy; the new topological entropy is addable for the iterations of the system. Meanwhile, the paper discusses the relationship between the new topological entropy of the retriction on the non-wandering set and that of the original system, and an inequality is acquired.
出处
《华北电力大学学报(自然科学版)》
CAS
北大核心
2009年第4期110-112,共3页
Journal of North China Electric Power University:Natural Science Edition
基金
河北省自然科学基金(A2008000132)
唐山师范学院自然科学研究发展基金(07C21)
关键词
拓扑r-熵
拓扑熵
非游荡点集
拓扑共轭
topological γ- entropy
topological entropy
non-wandering set
topological conjugacy