期刊文献+

连续自映射的拓扑r-熵及其性质 被引量:2

Topological r-entropy of a continuous self-mapping and its properties
下载PDF
导出
摘要 针对紧致度量空间上的连续自映射,本文给出了拓扑熵的一种新的定义,并讨论了这种拓扑熵的一些重要性质。证明了该拓扑熵与度量的选取无关,是拓扑共轭不变量,该拓扑熵对迭代系统具有可加性。同时,就系统在非游荡点集上的限制的这种拓扑熵与原系统的熵之间的关系进行了讨论,得到二者之间的一个不等式关系。 This paper introduces a new concept of topological entropy of a continuous elf-mapping on a compact metric space, and discusses some inportant properties of it. The following results are proved. The new topological entropy is independent of the choice of the metric and it is an invariant of topological conjugacy; the new topological entropy is addable for the iterations of the system. Meanwhile, the paper discusses the relationship between the new topological entropy of the retriction on the non-wandering set and that of the original system, and an inequality is acquired.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2009年第4期110-112,共3页 Journal of North China Electric Power University:Natural Science Edition
基金 河北省自然科学基金(A2008000132) 唐山师范学院自然科学研究发展基金(07C21)
关键词 拓扑r-熵 拓扑熵 非游荡点集 拓扑共轭 topological γ- entropy topological entropy non-wandering set topological conjugacy
  • 相关文献

参考文献8

  • 1Kolmogorov A N. A new metric invariant of transient dynamical systems and automorphisms of Lebesgue spaces [J]. Dokl. Akad. Sci. SSSR. , 1958, 119:861 - 864.
  • 2Adler R L, Konheim A G, McAndrew M H. Topologicalentropy [J]. Trans. Amer. Math. Soc., 1965, 114: 309-319.
  • 3Bowen R E. Entropy for group endomorphisnks and homogeneous spaces [J]. Trans. Amer. Math. Soc., 1971, 153: 401-414.
  • 4Feldman J. r- entropy, equipartition, and Ornstein' s isomorphism theorem in [ J ]. Israel journal of mathematics, 1980, 36:321-345.
  • 5Waiters P. An introduction to ergodic theory [ M ]. New York, Heidelberg, Berlin: Springer- Verlag, 1982. 186- 190.
  • 6Robinson C. Dynanfical System [ M]. London: CRC Press, 1999.
  • 7熊金城.关于拓扑熵的一点注记[J].科学通报,1988,20:1534-1536.
  • 8郑宏文,朱玉峻.连续自映射拓扑压的两个注记[J].数学物理学报(A辑),2006,26(3):403-409. 被引量:1

二级参考文献9

  • 1马东魁,徐志庭.IFS中一个经典遍历性质的一些推广[J].数学物理学报(A辑),2005,25(4):503-508. 被引量:1
  • 2何连法.伪轨和拓扑压[J].数学年刊(A辑),1996,1(5):635-642. 被引量:1
  • 3Walters P. An Introduction to Ergodic Theory, New York: Springer-Verlag, 1982
  • 4Walters P. Avariational principle for the pressure of continuous transformation. Amer J Math, 1975, 4:937-971
  • 5Robinson C. Dynamical Systems (second edition). London: CRC Press, 1999
  • 6熊金城.关于拓扑熵的一点注记[J].科学通报,1988,20:1534-1536.
  • 7Bowen R. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphism. Lecture Notes in Mathematics 470. New York: Springer-Verlag, 1975
  • 8Aoki N, Hiralde K. Topological Theory of Dynamical Systems, Recent Advances. Amsterdam: North-Holland Mathematical Library, 1994
  • 9Bowen R. Entropy for group endomorphisms and homogenuous spaces. Trans Amer Math Soc, 1971, 153:401-414

共引文献3

同被引文献17

  • 1D. A. Mizin.Estimation of the Entropy of Dynamic System[J]. Automation and Remote Control . 2002 (11)
  • 2A. Katok.Lyapunov exponents, entropy and periodic orbits for diffeomorphisms[J]. Publications Mathématiques de L’Institut des Hautes Scientifiques . 1980 (1)
  • 3Jacob Feldman.r-entropy, equipartition, and Ornstein’s isomorphism theorem inR n[J]. Israel Journal of Mathematics . 1980 (3-4)
  • 4Akin H.The topological entropy of invertible cellular automata. Journal of Computational and Applied Mathematics . 2008
  • 5Anvar M H.Transitivity and topological entropy on fuzzy dynamical systems through fuzzy observation. Pro- ceedings of the 8th WSEAS International Conference on Fuzzy Systems . 2007
  • 6Kolmogorov A N.A new metric invariant of transient dynamical systems and automorphisms of Lebesgue spaces. Dokl Akad Sci SSSR . 1958
  • 7Lampart M,Raith P.Topological entropy for set valued maps. Nonlinear Analysis: Theory,Methods and Applications . 2010
  • 8Yan J.Lecture Notes on Measure Theory. . 2004
  • 9Walters P.An introduction to ergodic theory. . 1982
  • 10Canovas JS,Rodriguez JM.Topological entropy of maps on the real line. Topology and Its Applications . 2005

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部