期刊文献+

由水分子扩散张量计算脑组织电导率张量的新方法 被引量:2

A New Method of Computing the ConductivityTensor of Brain Tissue Based on Water Diffusion Tensor
下载PDF
导出
摘要 脑组织电导率在脑电/磁研究中是一个重要参数。为了获取脑组织电导率,本研究利用扩散张量成像(DTI)技术,从电化学角度出发,提出了基于Stokes-Einstein与Nernst-Einstein方程的计算脑组织电导率的一种新方法,以三个正交方向上的电导率作为不同脑组织的电导率张量特征值。在人体头部DTI数据上进行计算,并与不同脑组织(白质、灰质、脑脊液)的经验电脑率值进行了对比,发现扩散各向异性越严重的组织,其电导率张量特征值偏离经验值越远,进一步证明了在脑电/磁计算中要考虑脑组织电导率各向异性的必要性。所提出的方法,基于扩散张量,考虑脑液体中各种离子浓度等因素,为获取脑组织各向异性电导率分布提供了一种新的有效途径。 The conductivity of brain tissue is an important parameter in EEG/MEG research. A new method was proposed for getting these parameters from the view of electrochemistry based on diffusion tensor imaging (DTI) using Stokes-Einstein and Nernst-Einstein equations. The method was tested on DTI data of a human subject, and the result was compared to the experiential conductivity of different brain tissues (white matter, grey matter, CSF ). It was showed that the more anisotropic the tissue was, the further the conductivity tensor eigenvalue of it deviated, illuminating the necessary of including anisotropic conductivity in EEG/MEG. This method was based on DTI data incorporating the factor of the concentration of the ions in brain liquid, and provided an effective approach of calculating anisotropic conductivity of brain tissue.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2009年第4期521-526,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(50577055) 美国国家卫生研究所基金(RO1EB007920) 美国国家科学基金(NSFBES-0411898)
关键词 核磁共振 扩散张量 电导率张量 magnetic resonance diffusion tensor conductivity tensor
  • 相关文献

参考文献15

  • 1Basser PJ, Mattiello J, Lebihan D, et al. Estimation of the effective self-dffusion tensor from the NMR spin echo [J]. Journal of Magnetic Resonance, 1994, 103 : 247 - 254.
  • 2Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review [J]. NMR in Biomedicine, 2002, 15: 435 - 455.
  • 3Norris DG. The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment [ J ]. NMR in Biomedicine, 2001, 14: 77- 93.
  • 4Mori S, Zhang Jiangyang. Principles of diffusion tensor imaging and its applications to basic neuroscienee research [J]. Neuron, 2006, 51 : 527 - 539.
  • 5Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging of the human brain [J]. Radiology, 1996, 201:637 - 648.
  • 6Stanisz GJ. Diffusion MR in biological systems: tissue compartments and exchange [ J]. Israel Journal of Chemistry, 2003, 43 : 33 - 44.
  • 7Wang Kun, Zhu Shanan, He B, et al. A new method to derive white matter conductivity from diffusion tensor MRI [J]. TBME, 2008, 55(10) :2481 - 2486.
  • 8Dronne A, Boissel JP, Grenier E. A mathematical model of ion movements in grey matter during a stroke [ J]. Journal of Theoretical Biology, 2006, 240: 599-615.
  • 9Sekino M, Yamaguchi K, Iriguchi N, et al. Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging [J]. Journal of Applied Physics, 2003, 93(10): 6370- 6373.
  • 10Tuch DS, Wedeen V J, Dale AM, et al. Conductivity tensor mapping of the human brain using diffusion tensor MRI [J]. Proc Natl Acad Sci USA, 2001, 98(20):11697- 11701.

同被引文献41

  • 1Arkhtari M, Byrant HC, Mamelak AN, Flynn ER. Conductivities of three-layer live human skull. Brain Topography, 2002, 14(3): 151-167.
  • 2Hoekema R, Wieneke GH, Leijten FSS, van Veelen CWM, van Rijen PC, Huiskamp GJM, Ansems J, van Huffelen AC. Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topography, 2003, 16(1): 29-38.
  • 3Seo JK, Pyo HC, Park C, Kwon O, Eung JW. Image reconstruction of anisotropic conductivity tensor distribution in MREIT: Computer simulation study. Phys Med Biol, 2004, 49(18): 4371-4382.
  • 4Geddes LA, Baker LE. The specific resistance of biological material- A compendium of data for the biomedical engineer and physiologist. Med Biol Eng, 1967, 5(3): 271-293.
  • 5Haueisen J, Tuch DS, Ramon C, Schimpfd PH, Wedeenb V J, Georgee JS, Belliveau JW. The influence of brain tissue anisotropy on human EEG and MEG. Neurolmage, 2002, 15(1): 159-166.
  • 6Tuch DS, Wedeen V J, Dale AM, George JS, Belliveau JW. Conductivity mapping of biological tissue using diffusionMRI. Ann N Y Acad Sci, 1999, 888:314-316.
  • 7Sekino M, Yamaguchi K, Iriguchi N, Ueno S. Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J Appl Phys, 2003, 93(10): 6730-6732.
  • 8Wang K, Zhu S, Mueller BA, Mueller BA, Lim KO, Liu ZM, He B. A new method to derive white matter conductivity from diffusion tensor MRI. IEEE Trans Biomed Eng, 2008, 55(10): 2418-2416.
  • 9Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling. Neurolmage, 2006, 30(3): 813-826.
  • 10Shimony JS, McKinstry RC, Akbudak E, Aronovitz JA, Snyder AZ, Lori NF, Cull TS, Conturo TE. Quantitative diffusion-tensor anisotropy brain MR imaging: Normative human data and anatomic analysis. Radiology, 1999, 212(3): 770-784.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部