期刊文献+

基于稀疏表示的两阶段脑电癫痫波检测算法研究 被引量:5

Automatic Detection of Epileptiform Transients in EEG by a Two-stage Algorithm Based on Sparse Representation
下载PDF
导出
摘要 脑电癫痫特征波的自动检测具有重要的临床应用价值,本研究提出一种基于自适应预测滤波与稀疏表示的两阶段癫痫特征波检测算法。第一阶段,使用自适应预测滤波器粗检出有嫌疑的癫痫波时段,在保证检测正确率的同时,减少数据量,提高后续处理效率;第二阶段,先以高斯函数及其一、二阶导数为原子的生成函数构建一个冗余多成分字典,再应用匹配追踪算法仅获取可疑波段在此字典下的稀疏表示(自适应参数化表示),原子的结构参数能够准确度量瞬时波形的多种形态结构特征如宽度、幅度、锐度等,进而提出基于形态结构匹配的检测算法,对预检输出的可疑时段进行鉴别分类。检测结果表明该算法针对临床癫痫EEG的检测率为93.3%,正确率为88.5%,相应的漏检率为6.7%,误检率为11.5%。 Automatic detection of epileptiform transients has important application in clinic diagnosis. A two-stage procedure was proposed to automatically detect EEG spikes, based on sparse representation of EEG signals and adaptive prediction filter. In the first stage, an adaptive autoregressive prediction filter was used as a pre-detector to detect all the possible epileptiform transients. This pre-detection not only reduced the computation time but also increased the overall detection performance of the procedure. In the second stage, Gaussian function and its first and second derivations were used as generating functions to construct a redundant mnlti-component dictionary. Subsequently the adaptive time-frequency parametrization of EEG signals were obtained using matching pursuit method in our dictionary, providing description of signal's morphological structures. Furthermore, a detection algorithm based on morphological structure match was proposed as a post-detector to classify the possible epileptiform transients. The experimental results indicated that the proposed detection technique yielded sensitivity of 93.3 % and selectivity of 88.5% based on clinical EEGs, thus maintaining lost detection rate of 6.7% and false detection rate of 11.5%.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2009年第4期535-543,共9页 Chinese Journal of Biomedical Engineering
基金 国家高技术研究发展(863)计划(2007AA12E100) 国家自然科学基金资助项目(60802039 60672074) 教育部高校博士点专项科研基金(20070288050 M200606018) 江苏省研究生创新基金
关键词 棘波检测 稀疏表示 自适应预测滤波 多成分字典 匹配追踪 spike detection sparse representation adaptive prediction filter multi-component dictionary matchingpursuit
  • 相关文献

参考文献17

  • 1Mallat S, Zhang Zhifeng. Matching pursuit with time-frequency dictionaries [J]. IEEE Trans on Signal Processing, 1993, 41(12) : 3397 - 3415.
  • 2Chert SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit [J]. SIAM Review, 2001, 43(1):129- 159.
  • 3Blumensath T, Davies ME. Gradient pursuits[J]. IEEE Trans on Signal Processing, 2005, 56(6) :2370 - 2382.
  • 4Durka PJ. Adaptive time-frequency parametrization of epileptic spikes [J]. Physical Review E, 2004,69(5):1914- 1918.
  • 5Piotr DJ, Ircha D, Blinowska KJ. Stochastic time-frequency dictionaries for matching pursuit [ J ]. IEEE Trans on Signal Processing, 2001, 49(3):507- 510.
  • 6Durka PJ, Szelenberger W, Blinowska K J, et al. Adaptive timefrequency parametrlzation in pharmaco EEG [ J ]. Journal of Neuroscience Methods, 2002, 117( 1 ) :65 - 71.
  • 7Durka PJ, Blinowska KJ. A unified time-frequency parametrization of EEG [J]. IEEE Engineering in Medicine and Biology, 2001, 20 (5) :47 - 53.
  • 8Malinowska U, Durka PJ, Zygierewicz J, et al. Explicit parameterization of sleep EEG transients [ J ]. Computers in Biology and Medicine, 2007, 37(4) : 534 - 541.
  • 9Indiradevi KP, Elias E, Sathidevi PS, et al. A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram [ J ] . Computers in Biology and Medicine, 2008, 38(7) : 805 - 816.
  • 10Gotman J, Gloor P. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG [ J ]. Electroenceph clin Neurophysiol, 1976, 41(5) :513 - 529.

二级参考文献6

共引文献5

同被引文献39

  • 1范慧杰,丛杨,杨云生,唐延东.基于稀疏表达的胃部疾病检测[J].科学通报,2013,58(S2):145-151. 被引量:1
  • 2高湘萍,吴小培,沈谦.基于脑电的意识活动特征提取与识别[J].安徽大学学报(自然科学版),2006,30(2):33-36. 被引量:6
  • 3刘铁兵,汤黎明,吴敏,王修来.癫痫脑电信号独立分量分析[J].医学研究生学报,2007,20(3):278-280. 被引量:6
  • 4Mallat S,Zhang Zhifeng.Matching pursuit with time-frequency dictionaries[J].IEEE Trans on Signal Processing,1993,41(12):3397-3415.
  • 5Durka PJ.Adaptive time-frequency parametrization of epileptic spikes[J] ,Physical Review E,2004,69(5):1914-1918.
  • 6Blumensath T,Davies ME.Gradient pursuits[J].IEEE Trans on Signal Processi ng,2008.56(6):2370-2382.
  • 7Indiradevi KP,Elias E,Sathidevi PS,et al.A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram[J].Computers in Biology and Medicine,2008,38(7):805-816.
  • 8Wu Min,Wei Zhihui,Tang Liming,et,al.Research Of Virtual Never Induce Electrical Signal Auto Cheek Technology 7th Asian Pacific Conference On Medical Biological Engineering.APCMBE 2008.
  • 9E.Cand'es,J.Romberg,and T.Tao.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans.Inform.Theory,2006,52(2):489-509.
  • 10D.Donoho.Compressed sensing[J].IEEE Trans.Inform.Theory,2006,52(4):1289-1306.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部