期刊文献+

新的小生境遗传算法在作业车间调度中的应用

Application and Study of A New Niche Genetic Algorithm in Job-shop Scheduling Problems
下载PDF
导出
摘要 普通适应值共享的小生境遗传算法是基于群体内个体适应度的共享,但这种小生境划分一般基于个体适应度、基因空间距离等属性,忽视了群体基因特征之间的关系.因此将生物学中的群体间共享机制引入到小生境遗传算法中,有效地利用了群体中的优良因素,并且利用了精英选择机制,增强了算法的全局和局部搜索能力,实验表明,普通适应值共享的小生境遗传算法在搜索能力和收敛性能上更有效. The general fitness-share niche genetic algorithm is the sharing of individual fitness in population, but it is based on the properties of individual fitness and gene distance, and the relationship of gene feature between populations is neglected. In this paper, the sharing-between-population is proposed by means of using the better factor of population, saving best result strategy and enhancing global and partial searching ability for earlier achievement of optimal solution. The result of the study shows the searching efficiency and convergence is better than that of the general fitness-share niche genetic algorithm.
出处 《大连交通大学学报》 CAS 2009年第4期47-50,共4页 Journal of Dalian Jiaotong University
基金 大连市计划资助项目(2007A10GX110) 辽宁省自然科学基金资助项目(20072161) 辽宁省教育厅高等学校科学研究计划资助项目(2009092)
关键词 遗传算法 群体共享 作业车间调度 genetic algorithm sharing-between-population job-shop scheduling problems
  • 相关文献

参考文献7

  • 1LEE C, DANUSAPUTRO S, LIM C. Minimizing weighted number of tardy jobs and weighted earliness-tardiness penalties about a common due date [ J ]. Computers and Operations Research, 1991,18:379-389.
  • 2张超勇,饶运清,李培根,刘向军.求解作业车间调度问题的一种改进遗传算法[J].计算机集成制造系统,2004,10(8):966-970. 被引量:53
  • 3GREFENSTETTE J J. Optimization of Control Parameters for Genetic Algorithms, IEEE Transactions on System [ J]. Man and Cybernetics, 1986,16( 1 ) : 122-128.
  • 4ASSILIOS PETRIDIS, ANASTASIOS BAKIRRZIS. Varying Fitness Function in Genetic Algorithm Constrained Optimization: The Cutting Stock and Unit Commitment Problem, IEEE Transactions on System [ J ]. Man and Cybernetics, 1998,28(5) :629-640.
  • 5YANG R, DOUGLAS I. Simple Genetic Algorithm with Local Tuning: Efficient Global Optimizing Technique [ J ]. Journal of Optimization Theory and Application, 1998,98 (2) :449-465.
  • 6李斌,陈立平,钟毅芳.基于多目标遗传算法的产品优化配置研究[J].中国机械工程,2004,15(20):1819-1822. 被引量:9
  • 7林焰,郝聚民,纪卓尚,戴寅生.隔离小生境遗传算法研究[J].系统工程学报,2000,15(1):86-91. 被引量:61

二级参考文献35

  • 1张宗炳.遗传与进化[M].北京:人民教育出版社,1981..
  • 2LENSTRA J K, RINNOOY, KAN A H G, BRUCKER P. Complexity of machine scheduling problem[J]. Ann. Discr.Math. ,1997,(1):343-362.
  • 3BLAZEWICZ J, DOMSCHKE W, PESCH E. The Job shop scheduling problem:conventional and new solution techniques [J]. European Journal of Research, 1996,93 ( 1 ): 1 - 33.
  • 4JAIN A S,MEERAN S. Deterministic Job-shop scheduling: past,present and future[J]. European Journal of Research,1999,113(2) :390-434.
  • 5LAARHOVEN Van P,AARTS E,LENSTRA J K. Job shop scheduling by simulated annealing[J]. Operations Research,1992,40(1) :113-125.
  • 6NOWICKI E,SMUTNICKI C. A fast taboo search algorithm for the Job shop problem[J]. Management Science, 1996, 42(6):797-813.
  • 7CARLIER J,PINSON F. An algorithm for solving the Jobshop problem[J]. Management Science, 1989,35 (2): 164 -176.
  • 8RODAMMER F A,WHITE K P. A recent survey of production scheduling[J]. IEEE Trans. SMC, 1988,18 (6): 841 -851.
  • 9MITSOU G, YASUHIRO T, ERIKA K. Solving Job- shop scheduling problems by genetic algorithm[A]. Proceedings of the 1995 IEEE International Conference on Systems, Man,and Cybernetics[C]. Vancouver:Institute of Electrical and Electronics Engineers, 1995. 1577- 1582.
  • 10GUOYONG S, HITOSHI ⅡMA,NOBUO S. A new encoding scheme for Job Shop problems by Genetic Algorithm[A].Proceedings of the 35th Conference on Decision and Control[C]. Kobe,Japan, 1996.4395-4400.

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部