期刊文献+

引入个体相异度阀值函数的新自适应遗传算法

Improved Adaptive Genetic Algorithm Introduced Individual Diversity Threshold Function
下载PDF
导出
摘要 提出了一种引入个体相异度阀值函数的新自适应遗传算法,该算法根据个体的相异性,给出了个体相异度的概念和相应的计算公式,并设计了一个与进化代数相关的阀值函数,以实现选择性交叉和变异.同时为了克服传统自适应遗传算法在进化过程中停滞不前的缺点,该算法引入非线性函数作为自适应交叉率和变异率计算公式.最后,针对典型车间调度问题,分别对改进算法和其他优化算法的计算结果进行了比较,结果表明新算法更有效. An improved adaptive genetic algorithm with individual diversity threshold function was proposed. The concept of individual diversity and relevant calculating formula based on the individual diversity was presented, and the threshold function relevant to evolutional algebra was devised to realize the selectivity intersection and variation. Meanwhile, a nonlinear function as the calculating formula of adaptive intersection and variation rate was drawn into the improved algorithm to overcome the disadvantages of traditional adaptive genetic algorithm which is liable to bog down in the evolutional process. Finally, the calculation result of the improved algorithm was compared with other optimal algorithms in solving classic job-shop scheduling problems.
出处 《大连交通大学学报》 CAS 2009年第4期60-63,共4页 Journal of Dalian Jiaotong University
关键词 相异度阀值 个体相异度 最优保存 自适应 diversity threshold individual diversity elitist preserved self-adaptive
  • 相关文献

参考文献6

  • 1玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 2HOLLAND J H. Adaptation in natural and artificial system[ M ]. Ann Arbor :The University of Michigan Press, 1977.
  • 3王万良,吴启迪,宋毅.求解作业车间调度问题的改进自适应遗传算法[J].系统工程理论与实践,2004,24(2):58-62. 被引量:66
  • 4SRINIVAS M, PANTNAIK L M. Adaptive Probabilities of crossover and mutation in genetic algorithms [J]. IEEE Trans Systems Man and Cybernetics, 1994,24 (4) : 656- 667.
  • 5金晶,苏勇.一种改进的自适应遗传算法[J].计算机工程与应用,2005,41(18):64-69. 被引量:82
  • 6MENNON A, MEHROTRA K, MOHAN C K, et al. Characterization of a class of sigmoid functions with applications to neural networks [ J ]. Neural Networks, 1996,9:819-835.

二级参考文献20

  • 1沙智明,郝育黔,郝玉山,杨以涵.基于改进自适应遗传算法的电力系统相量测量装置安装地点选择优化[J].电工技术学报,2004,19(8):107-112. 被引量:15
  • 2方剑,席裕庚.基于遗传算法的 Job Shop 静态调度算法[J].上海交通大学学报,1997,31(3):49-52. 被引量:14
  • 3王小平 曹立明.遗传算法--理论、应用与软件实现[M].西安:西安交通大学出版社,2000..
  • 4J H Holland.Adaptation in Natural Artificial Systems[M].MIT Press, 1975.
  • 5Masanori Sugisaka,Xinjian Fan.Adaptive Genetic Algorithm with a Cooperative Mode[C].In:Proceedings of IEEE International Symposium on Industrial Electronics,2001.
  • 6D E Goldberg.C, enetic Algorithm in Search,Optimization,and Machine Learning[M].Addison-Wesley, 1989.
  • 7Srinvas M,Patnaik L M.Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[J].IEEE Tram on Systems,Man and Cybernetics,1994;24(4).
  • 8F Herrera, M Lozano. Adaptation of genetic algorithm parameters based on fuzzy logic ControUers[C].In:F Herrera,J L Verdegay eds.Genetic Algorithms and Soft Comuting, Berlin,Germany:Springer-Verlag, 1996:95-125.
  • 9A E Eiben,R Hinterding,Z Michalewicz.Parameter control in evolutionary algorithms[J].IEEE Trans on Evol Comput, 1999,3:124-141.
  • 10J E Smith,T C Fogarty.Operator and parameter adaptation in genetic algorithms[J].Soft Computing, 1997;1(2):81-87.

共引文献539

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部