期刊文献+

基于重要位平面的彩色图像检索算法

A Color Image Retrieval Algorithm Based on Significant Bit-Planes
下载PDF
导出
摘要 针对利用颜色特征检索图像时的不足,提出了一种基于重要位平面的彩色图像检索算法.该算法利用位平面分解的方法对表征图像视觉的信息进行分解,从中提取能够表征图像视觉信息的5个最高位平面,并计算其上的R、G、B颜色分布熵来描述图像特征.为了避免图像中像素颜色值的微小变化对位平面复杂度的影响,采用了位平面的灰度码表示方法.最后设计了以位平面距离加权和的方法进行相似性度量.仿真实验表明所提出的算法具有高效的图像检索性能. A novel color image retrieval algorithm is proposed based on significant bit-planes to overcome the image retrieval shortcoming from color characters. Firstly, color visional image information is decomposed by bit-plane method, and five highest bit-planes are extracted from the color image by bit-plane theory. Then the RGB color distribution entropies are calculated on the bit-planes, respectively. Meanwhile, the gray-code of bitplane is used to avoid the effect of changes in the image intensity values on the bit-planes. Finally the summation of different bit-plane distances multiplying the corresponding weights is computed to measure the similarity of example and database images. Experiment results show that the proposed image retrieval algorithm is more effective and efficient in retrieving the similar images.
作者 田宏 杨树刚
出处 《大连交通大学学报》 CAS 2009年第4期67-71,共5页 Journal of Dalian Jiaotong University
基金 国家自然科学基金资助项目(70471064)
关键词 图像检索 位平面 颜色分布熵 灰度码 image retrieval bit-plane color distributed entropy gray-code
  • 相关文献

参考文献6

  • 1STEHLING R O, NASCIMENTO M A,FALCAO A X. On ‘shapes' of colors for content - based image retrieval [C]. In the ACM Multimedia Conference, Los Angles, 2000:171-174.
  • 2STRICKER M, DIMAI A. Color indexing with weak spatial constraints [ C ]//Proc. SPIE Storage Retrieval Still Image Video Databases Ⅳ, 1996,2670:29-40.
  • 3HUANG J, KUMAR S R, MITRA, et al. Image indexingusing color correlograms [C]//Proc. IEEE Conf. Computer Vision Pattern Recognition, 1997:762-768.
  • 4于汶涤,王崇骏,伍静,陈兆乾.基于全局颜色的图像检索算法与实现[J].计算机科学,2004,31(2):142-144. 被引量:5
  • 5ARIJIT BISHNU, BHARGAB B, BHATTACHARYA, et al. Euler vector for search and retrieval of gray-tone images[J]. IEEE Trans. on Systems, Man, and Cybernetics- part B :Cybernetics ,2005,35 (4) :801-812.
  • 6孙君顶,毋小省,周利华.基于信息熵的图像检索[J].西安电子科技大学学报,2004,31(2):223-228. 被引量:25

二级参考文献14

  • 1Chan S K. Content-based Image Retrieval[D]. Singapore: National Urfiversity of Singapore, 1994.
  • 2Swain M J, Ballard D H. Color Indexing[J]. Int J Comput Vision, 1991, 7(1): 11-32.
  • 3Gong st', Zhang H, Chuan C. An Image Database System with Fast Image Indexing Capability Based on Colour Histograms[ A].Proceedings of IEEE 10's Ninth Annum International Conference[ C]. Singapore: IEEE, 1994. 407-411.
  • 4Persoon E, Fu K S. Shape Discrimination Using Fourier Descriptors[J] . IEEE Trans on Systems, Man and Cybernetics, 1977, 7(3) :170-179.
  • 5Kauppinen H, Seppanen T, Pietikainen M. An Experimental Comparison of Autoregressive and Fourier-Based Descriptors in 2D Shape ClassLfication[J]. IEEE Trans on PAMI, 1995, 17(2): 201-207.
  • 6Mehtre B M, Kankanhalli M S, Lee W F. Shape Measures for Content Based Image Retrieval: a Comparison [ J ]. Information Processing & Management, 1997, 33(3) : 319-337.
  • 7Lu G J, Sajjanhar A. Region-based Shape Representation and Similarity Measure Suitable for Content-based Image Retrieval[J].Multimedia System, 1999, 7(2): 165-174.
  • 8Safar M. Shahabi C, Sun X. Image Retriew, d by Shape: a Comparative Study[A]. IEEE Int Conf on Multimedia and Expo[C]. New York: IEEE. 2000. 141-144.
  • 9Charkrabarti K, Binderberger M O, Porkaew K, et al. Similar Shape Retrieval in MARs[A]. IEEE Int Conf on Multimedia and Expo[C]. New York: IEEE, 2000. 709-712.
  • 10Smith J R, Chang S F. Transform Features for Texture Classification and Discrimination in Large Image Databases[ A]. Proc IEEE ICIP'95[C]. New York: IEEE, 1995. 407-411.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部