期刊文献+

基于二进制有序差别集的属性约简算法

AN ATTRIBUTE REDUCTION ALGORITHM BASED ON BINARY ORDERED DISCERNIBILITY SET
下载PDF
导出
摘要 文献[6]给出的基于简化二进制可分辨矩阵的快速属性约简算法是不完备的,并且在处理大数据集时的效率不很理想。提出一种基于二进制有序差别集的属性约简算法,该算法不需要创建二进制可分辨矩阵,减少了数据处理量,大大提高了约简的效率,使算法的时间复杂度和空间复杂度分别降为m ax{O(|C|2|U/C|2),O(|C|2|BM sCount|)}和O(|BM sCount|)。最后的实验结果表明该算法是正确的、高效的。 Fast attributes reduction algorithm provided by Xu Yanzhang based on simplified binary discernibility matrix is an incomplete one, and is far from efficiency in dealing with large data sets. In the paper, an attribute reduction algorithm based on binary ordered discern- ibility set is presented. The algorithm does not need to create a binary discernibility matrix, and the computing data is decreased greatly, thus the efficiency of the reduction algorithm is noticeably improved. The time complexity and space complexity of the new algorithm are cut down to max{O(|C|U/CI2),0(|C|2}BMsCount1)| and O(IBMs Count|).. The final experimental results show that the algorithm is correct and efficient.
出处 《计算机应用与软件》 CSCD 2009年第8期69-72,共4页 Computer Applications and Software
基金 安徽省自然科学基金项目(O50420204) 安徽高校省级自然科学研究项目(KJ2008B117)
关键词 粗糙集 二进制可分辨矩阵 有序差别集 核属性 属性频率 Rough set Binary discernibility matrix Ordered discernibility set Core attributes Attributes frequency
  • 相关文献

参考文献7

二级参考文献19

  • 1叶东毅,陈昭炯.一个新的二进制可辨识矩阵及其核的计算[J].小型微型计算机系统,2004,25(6):965-967. 被引量:49
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3Pawlak Z. Rough sets-theoretical aspects of reasoning about data. Dordrecht: Kluwer Academic Publishers, 1991
  • 4Felix R,Ushio T. Rough Sets-based Machine Learning Using a Binary Discernibility Matrix. IPMM;' 99 published, 1999. 299~305
  • 5Pawlak Z. Rough Sets. International Journal of Computer and information Science [J], 1982,11(5) : 341-356
  • 6Pawlak Z, Wong S K M, Ziarko W. Rough sets: probabilistic versus deterministic approach [J]. Int J Man-Machine Studies,1988,29:81-95
  • 7Skowron A, Rauszer C. The Discernibility Matrices and Functions in Information Systems [A]. In: Slowinski R, ed. intelligent Decision Support Handbook of Applications and Advances of the Rough Sets Theory, 1992. 331-362
  • 8Hu Xiao Hua, Cercone N. Learning in relational databases: a rough set approach [J]. Computational Intelligence, 1995,11 (2) :323-337
  • 9Fleix R, Ushio T. Rough Sets-based Machine Learning Using a Binary Discernibinity Matrix [J]. IPMM' 99 published, 1999. 299-305
  • 10王珏,王任,苗夺谦,郭萌,阮永韶,袁小红,赵凯.基于Rough Set理论的“数据浓缩”[J].计算机学报,1998,21(5):393-400. 被引量:239

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部