期刊文献+

U-2.5Nb氢蚀初期动力学试验研究 被引量:2

Hydriding Kinetics at Early Stage for U-2.5Nb Alloy
下载PDF
导出
摘要 利用带显微镜的气固反应系统,在线观察了U-2.5Nb氢蚀初期氢化物成核和生长过程,表征了U-2.5Nb氢蚀初期的动力学特征和反应速度,研究了温度、压力和膜厚对U-2.5Nb氢蚀初期行为特征的影响。结果表明,U-2.5Nb比未合金化铀的氢化速度大很多,抗氢蚀性能更差。在低温(<125℃)下,孕育期随反应温度的升高而变短,遵从Arrhenius关系,超过125℃,孕育期随反应温度的升高而变长,孕育期存在一最小值;孕育期随反应压力升高而变短,与反应氢压力成反比关系;膜厚对孕育期的影响极其明显,孕育期随氧化膜厚度增加而变长。孕育期越长的氢蚀,其表面的成核点越少,成核越不均匀,且易在局部形成大的氢化物,氢化速度亦越低。 The nucleation and growth of hydride on U-2.5Nb alloy was characterized utilizing a Sievert ' s-type apparatus with an optical microscope, and the kinetics of hydriding was calculated from the measured decreases in pressure. The effect of temperature and pressure and oxide thickness on the behavior of hydriding was studied. The hydriding rate of U-2.5Nb alloy is higher much than that of U. Hydriding induction time decreases as the temperature increases, which follows the Arrhenius law under a temperature of about 125 ℃, but beyond 125 ℃, induction time increases sharply with temperature increasing. Induction time varies as the inverse of the hydrogen pressure, which follows the reciprocal relation. The oxide thickness on U-2.5Nb surface affects the induction time clealy, and induction time increases with the increasing of oxide thickness. In the case of hydriding with long induction time, reaction site is fewer, and nucleation distribution is asymmetrical that is apt to local corrossion.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2009年第8期683-687,共5页 Atomic Energy Science and Technology
关键词 U-2.5Nb 氢蚀 动力学 孕育期 U-2.5Nb hydride growth hydriding kinetics induction time
  • 相关文献

参考文献14

  • 1JOHN A, ROBERT J, MARILYN E. A model for the initiation and growth of metal hydride cor rosion, LA-UR-00-S496[R]. USA: Los Almos National Laboratory, 2000.
  • 2POWELL G L, HARPER W L, KIRK- PATRICK J R. The kinetics of the hydriding of uranium metal[J]. J Less-Common Met, 1991, 172-174: 116-123.
  • 3KIRKPATRICK J R, CONDON J B. The linear solution for hydriding of uranium[J]. J LessCommon Met, 1991, 172-174.. 124-135.
  • 4CONDON J B. Calculated vs. experimental hydrogen reaction rates with uranium [J]. The Journal of Physical Chemistry, 1975, 79: 392- 397.
  • 5BLOCH J. The kinetics of a moving metal hydride layer [J].Journal of Alloys and Compounds, 2000, 312: 135-153.
  • 6BLOCH J, MINTZ M H. Kinetics and mechanism of the U-H reaction[J]. J Less-Common Met, 1981, 81: 301-320.
  • 7BRILL M, BLOCH J, MINTZ M H. Experimental verification of the formal nucealtion and growth rate equations initial UH3 development on uranium surface[J].Journal of Alloys and Compounds, 1998, 266: 180-185.
  • 8BLOCH J. MINTZ M H. The kinetics of hydride formation in uranium[R]. Israeli IAEC, 2001.
  • 9BLOCH J. The initial kinetics of uranium hydride formation studied by a hot-stage microscope technique[J]. J Less-Common Met, 1984, 103: 163-171.
  • 10MORENO D, ARKUSH R, ZALKIND S. Physical discontinuities in the surface microstruc ture of uramium alloys as preferred sites for hy drogen attack[J]. J Nucl Mater, 1996, 230: 181-186.

同被引文献11

  • 1邹乐西,孙颖,齐连柱,杨锁龙,郭文胜,李庆松.预热退火对铀和铀铌合金氢化动力学的影响[J].核化学与放射化学,2004,26(3):153-157. 被引量:1
  • 2Bloch J, Mintz M H. Journal of Alloys and Compounds[J], 1996, 241:224.
  • 3Glascott J. The Science and Technology Journal of A WE[J], 2003, 6:16.
  • 4Bloch J, Mintz M H. Journal of the Less-common Met als[J], 1981, 81:301.
  • 5Bloch J. Journal of the Less-common Met als[J], 1984, 103: 163.
  • 6Bingert J F, Hanrahan R J, Field R D. Journal of Alloys and Compounds[J], 2004, 365:138.
  • 7Shamir N. Applied Surface Science [J], 2007, 253:5957.
  • 8Christopher D T, Turab Lookman, Lillard R S. Acta Materialia[J], 2010, 58:1045.
  • 9Bazley S G, Petherbridge J R, Glascott J. Solid State lonics[J], 2012, 211:1.
  • 10李瑞文,汪小琳,李赣.铀材及铀合金氢蚀影响因素分析[J].材料保护,2010,43(5):20-22. 被引量:3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部