摘要
在无穷维Hilbert空间中,即使对非扩张映像Mann,迭代算法仅有弱收敛。为了得到强收敛定理,该文利用Hilbert空间中闭凸子集的一个序列和一个给定向量作适当的凸组合修改Mann迭代算法,在Hilbert空间中给出了一个新的κ-严格伪压缩修正的Mann迭代算法——似Ishikawa迭代算法,并且建立了该算法的强收敛定理。推广和改进了一些最新的结果。
In an infinite dimensional Hilbert space, the normal Mann's iterative algorithm has only weak convergence, in general, even for non-expansive mappings. In order to get a strong convergence result, the normal Mann's iterative algorithm is modified by using a suitable convex combination of a fixed vector and a sequence in a closed convex subset of a real Hilbert space. A strong convergence theorem is established by means of a new Ishikawa-like iterative algorithm for κ-strict pseudo-contractions in Hilbert spaces. The results presented in this paper have extended and improved some recent results.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2009年第4期546-548,563,共4页
Journal of University of Electronic Science and Technology of China
基金
Supported by the Natural Science Foundation of Sichuan Province(08ZA008)~~
关键词
收敛定理
迭代算法
距离投影
非扩张映像
κ-严格伪压缩
convergence theorem
iterative algorithm
metric projection
non-expansive mappings
κ-strict pseudo-contraction