摘要
提出了一个新三维分段线性混沌系统,研究了新系统的对称性和不变性、耗散性和吸引子的存在性、平衡点及稳定性等基本动力学特性。利用相轨图、庞加莱映射、李雅普诺夫指数谱和分岔图等数值仿真手段,验证了该系统能运行在混沌和周期轨道,具有丰富的动力学行为,并能通过一个常数控制器控制到不同形状混沌吸引子的混沌轨道或周期轨道或一个有界点。
A new three-dimensional piecewise-linear chaotic system is proposed. Some dynamical characteristics of this system including symmetry and invariance, dissipativity and existence of attractor, equilibrium, and stability are investigated in detail. By numerical simulating with Lyapunov exponent spectrum, bifurcation diagram, Poincaré mapping, and phase portrait, this paper verifies that the proposed system has abundant dynamical behaviors. It can operate on chaotic and periodic orbits and can evolve into chaos with difform chaotic attractor or period or limited point by a constant controller.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2009年第4期564-568,共5页
Journal of University of Electronic Science and Technology of China
基金
江苏省高校自然科学研究计划(02KJD510016)
关键词
吸引子
混沌系统
常数控制器
分段线性
attractor
chaotic system
constant controller
piecewise-linear