期刊文献+

光笔视觉三维测量中光斑图像点立体匹配方法 被引量:3

Stereo Matching of Light-spot Image Points in Light-probe 3D Vision Measurement
下载PDF
导出
摘要 针对光笔视觉三维测量中左右两幅图像中光斑图像点的立体匹配难题,引入SoftPosit算法将其转换为二维像点与三维物点对应关系未知情况下的位姿参数估计问题。通过将对应匹配和位姿估计融合在一起,进行捆绑迭代寻优,分别完成左右两幅图像中光斑图像点与空间光笔光斑的对应匹配,从而实现了左右两幅图像中对应光斑图像点的立体匹配。该方法基于模型,与空间点分布模式、点的数量及图像灰度无关,实验结果表明该方法切实可行,也可用于特征点的识别。 One of the difficulties in light-probe 3D vision measurement is the stereo matching of the light-spot image points in the left and right images. Therefore, the SoftPoist algorithm was adopted to transform the difficulty to a position and orientation estimation problem under the condition that the correspondences of the 2D image points and the 3D object points are unknown. By combining the correspondence problem and the position and orientation estimation problem together to perform bundle optimization, the matching of the light-spot image points and the spatial light-emitting-spots of the light-probe could be completed, respectively, in order to achieve the stereo matching of the light-spot image points in the left and right images. The proposed method is based on model and is not related to the spatial point distribution, point number and the image gray level. The experiment results show that the proposed method is feasible and can be also used for feature points recognition.
出处 《光电工程》 CAS CSCD 北大核心 2009年第8期45-49,共5页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(50875014) 教育部新世纪优秀人才项目(NCET-07-0043) 北京市自然科学基金资助项目(3092014)
关键词 立体匹配 视觉 光斑图像 三维测量 stereo matching vision light-spot image 3D measurement
  • 相关文献

参考文献5

  • 1黄凤山.光笔式单摄像机三维坐标视觉测量系统关键技术研究[D].天津:天津大学,2005:1-10.
  • 2GAO Ming, WEI Zhen-zhong, MA Li-qun, et al. Multiple facula targets recognition based on particular distribution [C]//IEEE 2008 International Conference on Audio, Language and Image Processing, Shanghai, China, July 7-9, 2008: 753-758.
  • 3Leica company. Products introduction [EB/OL].(2008-3) [2008-12]. http://www.leiea-geosystems.com/metrology/en/lgs_406. htm.
  • 4PHILIP D, DANIEL D, RAMANI Di, et al. SoftPOSIT: Simultaneous Pose and Correspondence Determination [J]. International Journal of Computer Vision(S0920-5691), 2004, 59(3): 259-284.
  • 5SINKHORN R. A Relationship between Arbitrary Positive Matrices and Doubly Stochastic Matrices [J]. Annals Mathematical Statistics(S0003-4851), 1964, 35(2): 876-879.

同被引文献21

  • 1游素亚.立体视觉研究的现状与进展[J].中国图象图形学报(A辑),1997,2(1):17-24. 被引量:101
  • 2LI Baozhang, CUI Yanping. Edge Subpixel Location of Ellipse in Computer Vision Measurement [C]//3rd International Conference onAdvaneedComputerControl, Harbin, China, Jan 18-20, 2011: 452-456.
  • 3GUO Yubo, YAO Yu, DI Xiaoguang. Research on structural parameter optimization of binocular vision measuring system for parallel mechanism [C]// International Conference on Mechatronics and Automation, Luoyang, China, June 25-28, 2006: 1131-1135.
  • 4LIU Qiong, QIN Xiansheng, YIN Shenshun, et al. Structural parameters optimal design and accuracy analysis for binocular vision measure system [C]// International Conference on Advanced Intelligent Mechatronics, Xian, China, July 2-5, 2008: 156-161.
  • 5Carsten Steger, Maekus Ulrich, Christian Wiedemann, et al. Machine Vision Algorithms and Applications [M]. Berlin Wiley-VCH, 2008: 268-274.
  • 6Ishita De, Bhabatosh Chanda, Buddhajyoti Chattopadhyay. Enhancing effective depth-of-field by image fusion using mathematical morphology [J]. Images and Vision Computing(S0262-8856), 2006, 24(12): 1278-1287.
  • 7Prasad A K. Stereoscopic particle image velocimetry [J]. Experiments in fluids(S0723-4864), 2000, 29(2): 103-116.
  • 8李中伟,王从军,史玉升.3D测量系统中的高精度摄像机标定算法[J].光电工程,2008,35(4):58-63. 被引量:23
  • 9雷彦章,赵慧洁,姜宏志.一种单双目视觉系统结合的三维测量方法[J].光学学报,2008,28(7):1338-1342. 被引量:32
  • 10刘建伟,梁晋,梁新合,曹巨明,张德海.大尺寸工业视觉测量系统[J].光学精密工程,2010,18(1):126-134. 被引量:97

引证文献3

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部