期刊文献+

基于混沌和置乱双重加密的数字图像水印算法 被引量:5

Digital Image Watermarking by Double Encryption with Chaos and Arnold
下载PDF
导出
摘要 提出一种基于离散平稳小波变换的变换域的数字图像水印嵌入和提取算法。本算法先将数字水印图像进行置乱变换(Arnold变换),然后将置乱后的水印图像进行混沌加密,将加密后的水印按行展开成一维行向量,并将像素值从大到小排序,将原始图像平稳小波分解得到的低频系数也按行展开成一维行向量,并按从大到小排序。将排序后的水印图像嵌入排序后的低频系数中,变回二维后结合其它频域重构出水印图像,水印提取是嵌入过程的逆过程,将提取出的水印图像进行混沌解密、Arnold反置乱变换得到原始水印图像。本算法选择了合适的水印嵌入位置,实验结果表明:该算法使图像的不可见性好,而且所嵌入的水印对一般的图像处理攻击如噪声、滤波、旋转、压缩等有较强的鲁棒性。 A new kind of watermark-embedding and detecting algorithm based on stationary wavelet transform was proposed. Firstly, the digital watermarking was transformed randomly (Arnold transformation), and then encrypted by chaos. The encrypted watermarking was transformed to one-dimensional row vector, and the pixel value was sorted. The coefficient of primitive image of stationary wavelet transformation was expanded to one-dimensional row vector, too, and then the sorted watermarking was embedded to the sorted low frequency and turned to two dimensions. Secondly, the image is reconstructed by coefficients of high-frequency. The process of watermarking extracted is the inversion of the process of watermarking embedded. Finally, the watermarking was withdrawn and the primitive watermarking was obtained after the anti-Arnold transformation. This algorithm chose the appropriate position to embed the watermarking. Experimental results indicate that the algorithm not only enables the watermarking to have the very good invisibility, but also makes the watermarking have very strong robustness to the general image attacks, such as noise, filter, rotation, compression and so on.
出处 《光电工程》 CAS CSCD 北大核心 2009年第8期116-122,共7页 Opto-Electronic Engineering
基金 浙江省自然科学基金项目(Y506203) 浙江省科技计划重点项目(2007C21014)
关键词 数字水印 ARNOLD变换 小波变换 鲁棒性 digital watermarking Arnold transform wavelet transform robustness
  • 相关文献

参考文献11

二级参考文献37

  • 1Falconer K 曾文曲 刘世耀译.分形几何--数学基础及应用[M].沈阳:东北大学出版社,1991.243-245.
  • 2[1]D Donoho. De-noising via soft thresholding[R]. Department of Statistics,Stanford University,1992.
  • 3[2]D L Donoho,I M Johnstone. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika,1994,81:425~455.
  • 4[3]Donoho David L. Denoising by soft thresholding [J]. IEEE Trans on Information Theory,1995,41(3):613~627.
  • 5[4]Donoho David L,Jhonstone lain M. Threshold selection for wavelet shrinkage of noisy data [A]. In: Proc 16th Annual International Conference of IEEE Engineering in Medicine and Biology Society[C],Baltimore,Maryland. 1994.
  • 6[5]S Grace Chang,Bin Yu,Martin Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Trans on Image Processing,2000,9(9):1522~1531.
  • 7[6]M Lang,H Guo,J E odegend,et al. Nonlinear processing of a shift-invariant DWT for noise reduction[A]. In SPIE Conference on wavelet applications[C].1995.
  • 8[7]J C Pesquet,H Krim,H Carfanman. Time invariant orthonormal wavelet representations[A].Submitted to IEEE Trans[C].1994.
  • 9[8]M J Shensa.The discrete wavelet transform:wedding the a trous and Mallat algorithms[J].IEEE Trans.Information Theory,40:2464~2482.
  • 10[9]C Beylkin.On the representation of operators in bases of compactly supported wavelets[J].SIAM J Numer,1992,29(1):1716~1740.

共引文献90

同被引文献53

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部