期刊文献+

波形碳纳米管增强复合材料的有效刚度和局部应力的宏微观均质化数值模拟 被引量:4

NUMERICAL SIMULATION OF EFFECTIVE STIFFNESS AND LOCAL STRESSES FOR WAVY NANO-TUBE REINFORCED COMPOSITES BY THE MACRO-MICROSCOPICHOMOGENIZATION METHOD
下载PDF
导出
摘要 采用分子动力学方法简化的碳纳米管等效纤维模型,利用具有精确周期性边界条件的均质化理论和宏微观均质化法分析正弦波形非连续碳纳米管的有效刚度和局部应力分布规律。结果表明,纳米增强复合材料的有效刚度和局部应力对碳纳米管的波形非常敏感,碳纳米管稍有弯曲就会导致复合材料有效刚度降低和应力传递能力的下降,为揭示复合材料中碳纳米管的增强机制和改善增强效果提供理论依据。 The effective elastic properties and local stress of non-continuous wavy Carbon nano-tubes ( CNTs)/polymer composites were analyzed by using the homogenization method with exact periodic boundary conditions. The effective fiber model with transversely isotropic constitutive relationships was utilized to simplify the CNT and the surrounding polymer in this study. The results show that the elastic properties and local stress are sensitive to CNTs arrays and CNTs' s waviness within the selected representative volume element (RVE), and even slight change in nano-tube curvature significantly reduces the effective stiffness and the ablity of stress transfer for nano-tube reinforced composites compared with the straight nano-tubes reinforced composites, which helps to disclose the strengthening mechanism of wavy nano-tube composites and to improve the strengthening effect.
出处 《机械强度》 CAS CSCD 北大核心 2009年第4期670-674,共5页 Journal of Mechanical Strength
基金 国家自然科学基金(10772047/A020206) 佛山市科技专项基金(2007055B) 国家教育部留学回国基金(2008C890)资助项目~~
关键词 碳纳米管增强复合材料 均质化法 局部应力分布 Wavy Carbon nano-tubes reinforced composites Homogenization method Local stress distribution
  • 相关文献

参考文献12

  • 1Qian D, Dickey E C, Andrews R, deformation mechanisms in Carbon et al. Load nanotube- transfer and polystyrene composites[J]. Applied Physics Letters, 2000, 76:2868-2870.
  • 2Schadler L S, Giannaris S C, Ajayan P M. Load transfer in Carbon nanotube epoxy composites[J]. Applied Physics Letters, 1998, 73: 3842-3844.
  • 3Thostenson E T, Chou T W. On the elastic properties of Carbon nanotube-based composites: modeling and characterization[J]. J. Physics D, 2003, 36: 573-582.
  • 4Luo Dongmei, Wang Wen-Xue, Takao Yoshihiro. Effects of the distribution and geometry of Carbon nanotubes on the macroscopic stiffness and microscopic stresses of nano-composites[J]. Composites Science and Technology, 2007, 9: 2947-2958.
  • 5Seidel G D, Lagoudas D C. Micromechanical analysis of the effective elastic properties of Carbon nano-tube reinforced composites[J]. Mechanics of Materials, 2006, 38(8-10) : 884-907.
  • 6Song S Y, Youn J R, Modeling of effective elastic properties for polymer based Carbon nanotube composites[J]. Polymer, 2006, 47(5) : 1741-1748.
  • 7Fu S Y, Yue C Y, Hu X. et al. On the elastic stress transfer and longitudinal modulus of unidirectional muhi-short-fiber composites[J]. Composites Science and Technology, 2000, 60: 3001-3012.
  • 8Haque A, Ramasetty A. Theoretical study of stress transfer in Carbon nanotube reinforced polymer matrix composites[J]. Composite Structures, 2005, 71: 68-77.
  • 9罗冬梅,汪文学,高雄善裕,柿本浩一.确定均质化法中精确周期性边界条件的新解法及其在复合材料刚度预测中的应用[J].机械强度,2006,28(4):517-523. 被引量:16
  • 10Luo Dongmei, Wang Wen-Xue, Takao Yoshihiro. Application of homogenization method on the evaluation and analysis of the effective stiffness for non-continuous Carbon nanotube/polymer composites[J]. Polymer Composites, 2007, 9: 688-695.

二级参考文献19

  • 1Jansson S. Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure. Int J Solids Structures, 1992, 29:2 181 - 2 200.
  • 2Hassani B, Hinton E. A review of homogenization and topology optimization Ⅱ-analytical and numerical solution of homogenization equations. Computers & Structures, 1998, 69:719 - 738.
  • 3Halpin J C. Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater, 1969,3:732 - 724.
  • 4Halpin J C, Kardos J L. The Halpin-Tsai equations: A review. Polym Eng Sci, 1976, 16:344 - 352.
  • 5Halpin J C. Primer on composite materials. New York: Technomic,1992.
  • 6Hermans J J. The elastic properties of fiber reinforced materials when the fibers are aligned. Proc Kon Ned Akad v Wetensch B.,1967,65:1 9.
  • 7Hill R. Theory of mechanical properties of fiber-strengthened materials:I Elastic behaviour. J Mech Phys Solids, 1964,12:199 - 212.
  • 8Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 1973, 21:571 - 574.
  • 9Weng G J. Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int J Engng Sci, 1984, 22:845- 856.
  • 10Tandon G P, Weng G J. The effect of aspect ratio of inclusions on the elastic properties of undirectionally aligned composites. Polymer Composites,1984,5(4) :327 - 333.

共引文献15

同被引文献34

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部