期刊文献+

左拟正规带的张量积

Tensor product of left quasinormal bands
原文传递
导出
摘要 证明左拟正规带范畴中张量积的存在性,并证明了它与半群张量积的关系,同时给出半格在左拟正规带范畴中张量积与在半格范畴中张量积之间的关系。 The existence of a tensor product is proved in the left quasi-normal band category, and the relationship with the tensor product in the semi-group category is provided. Furthermore, the relationship between the tensor product of semi-lattices in the left quasi-normal band category and in the semi-lattice category is given.
作者 毕晓冬
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第8期39-41,共3页 Journal of Shandong University(Natural Science)
关键词 左拟正规带 张量积 半格 left quasi-normal band tensor product semi-lattices
  • 相关文献

参考文献6

  • 1毕晓冬.左拟正规带的自由积[J].山东大学学报(理学版),2008,43(6):83-86. 被引量:1
  • 2PETRICH M, Lecture in semigroups[M]. London: Wliley, 2001.
  • 3GRILLET P A. The tensor product of semigroups[J]. Trans Amer Math Soc, 1969, 138:267-280.
  • 4HOWIE J M. Fundamentals of semigroup theory[ M]. Oxford: Oxford University Press, 1995.
  • 5SEIDE M. Tensor product systems of CP-semigroup[J]. Journal of Mathematical Sciences, 2001, 106:2890-2895.
  • 6WEBER A. Tensor product of recurrent hypercyclic semigroups[ J]. Journal of Mathematical Analysis and Applications, 2009, 351:603- 606.

二级参考文献4

  • 1PETRICH M. Lecture in semigroups[M]. London: Wiley, 2001.
  • 2MAGNUS W, KARRASS A, SOLITAR D. Combinatial group theory[ M]. New York: Wiley-Interscience, 2006.
  • 3HIGGINS P M. Techniques of semigroup theory[M]. Oxford: Oxford University Press, 1992.
  • 4HOWIE J M. Fundamentals of semigroup theory[ M]. Oxford: Oxford University Press, 1995.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部