摘要
明确了含阻尼非保守分析力学问题的控制方程,按照广义力和广义位移之间的对应关系,将各控制方程乘以相应的虚量,积分并代数相加,考虑到系统的非保守特性,进而建立了非保守分析力学问题的拟变分原理和广义拟变分原理.应用拟Hamilton原理研究了具有阻尼的二自由度非保守动力系统的算例.
With the basic equation on non-conservative analytical mechanics with damping settled, according to the corresponding relations between generalized forces and generalized displacements, the basic equations are multiplied by corresponding virtual quantities, integrated and then added algebraically. Considering that systems are non-conservative, the quasi-variational principle and the generalized quasi-variational principle of non-conservative analytical mechanics are established. Finally, based on quasi-Hamiltonian principle, an example on non-conservative systems of the two degree of freedom with damping is studied.
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2009年第7期565-569,共5页
Transactions of Beijing Institute of Technology
基金
国家自然科学基金资助项目(10272034)
国家教育部高等学校博士学科点专项科研基金资助课题(20060217020)
关键词
分析力学
阻尼
非保守系统
analytical mechanics
damping
non-conservative systems