摘要
为了降低视频传感器网络中的网络负载,减少能量消耗、降低时延,提出了一种分层的基于注意力模型的多质量图像融合方法.通过对节点的结构化部署及视图间的区域映射,建立了基于动态注意力的节点唤醒机制.通过使用低层节点采集的高质量图像对高层节点低质量图像的融合,使注意力目标得到增强.实验结果证明了该融合方法的有效性.
In order to reduce network load, energy consumption and delay in video sensor network, a layered multi-quality image fusion method based on attention is proposed. A dynamic- attention based wakeup mechanism is established by structured deployment and region-mapping between views of nodes. The low-quality image acquired by high-layer node is fused with high- quality images from low-layer node, and the attention target is enhanced. Experiment results further showed that the fusion method is effective.
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2009年第7期614-617,共4页
Transactions of Beijing Institute of Technology
基金
北京市自然科学基金资助项目(4082027)
北京市重点学科建设资助项目