期刊文献+

基于模糊聚类遗传算法的图像分割方法研究 被引量:4

Research on the Method of Fuzzy Clustering Image Segmentation Based on Genetic Algorithm
下载PDF
导出
摘要 图像分割是图像处理和图像分析的关键步骤,在图像工程中占据重要地位。模糊C均值聚类(FCM)算法是一种经典的模糊聚类分析方法,但其算法初始聚类原型是随机选取的,从而造成算法性能强烈地依赖聚类原型的初始化,将遗传算法强大的通用性应用于模糊聚类算法,对模糊聚类中心进行编码,然后依据FCM算法的目标函数建立适应度函数,选择适当的交叉率和变异率,最终实现基于模糊聚类遗传算法的图像分割。采用这种方法一方面能较好地解决模糊聚类对初始化敏感的问题,又能在一定程度上提高了分割速度。实验结果表明,该算法具有良好的分割效果。 Image segmentation is a key technology both in image processing and image analysis, which plays an important role in image project. Fuzzy C-means algorithm is one of the most popular methods of clustering analysis. However, the traditional FCM algorithm does not work well because its initial clustering central collection is the stochastic selection. The genetic algorithm which has a powerful universality is introduced. Firstly the fuzzy cluster center is coded,then the fitness function is established according to the object function in FCM algorithm,and under the appropriate crossover rate and mutation rate, the image segmentation based on the genetic fuzzy clustering algorithm is realized. Using the new method,limitation of initial sensitivity has been overcome about fuzzy clustering, and the segmentation speed has been improved to some extent. The experiments show that this segmentation algorithm has achieved a good effect.
出处 《现代电子技术》 2009年第16期120-122,共3页 Modern Electronics Technique
关键词 模糊聚类 遗传算法 图像工程 图像分割 fuzzy clustering genetic algorithm image engineering image segmentation
  • 相关文献

参考文献7

  • 1章毓晋.图像分割[M].北京:科学出版社,2001..
  • 2IM J, Jensen J R, Tullis J A. Object - based Change Detection Using Correlation Image Analysis and Image Segmentation[J]. International Journal of Remote Sensing, 2008, 29 (2) :399- 423.
  • 3Wu Yi- Ta, Shih, Frank Y, et al. A Top- down Region Dividing Approach for Image Segmentation[J]. Pattern Recognition,2008,41(6) :1 948-1 960.
  • 4高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2003.
  • 5匡泰,朱清新,孙跃.FCM算法用于灰度图像分割的初始化方法的研究[J].计算机应用,2006,26(4):784-786. 被引量:15
  • 6李敏强 寇纪淞 林丹.遗传算法的基本理论与应用[M].北京:科学出版社,2004..
  • 7狄宇春,邓雁萍.关于图象分割性能评估的评述[J].中国图象图形学报(A辑),1999,4(3):183-187. 被引量:4

二级参考文献14

共引文献640

同被引文献37

  • 1王蜀,李永宁,陈楷民,黄戈.基于数学形态学的医学图像分割[J].计算机应用,2005,25(10):2381-2382. 被引量:12
  • 2匡泰,朱清新,孙跃.FCM算法用于灰度图像分割的初始化方法的研究[J].计算机应用,2006,26(4):784-786. 被引量:15
  • 3彭启民,贾云得.一种形态学彩色图像多尺度分割算法[J].中国图象图形学报,2006,11(5):635-639. 被引量:11
  • 4刘晓龙,张佑生,谢颖.模拟退火与模糊C-均值聚类相结合的图像分割算法[J].工程图学学报,2007,28(1):89-93. 被引量:17
  • 5Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Plenum Press, New York, 1981.
  • 6Nikhil P R, Bezdek J C. On Cluster Validity for the Fuzzy C- Means Model[J]. IEEE Transactions on Fuzzy Systems,1995,3 (3) :370-379.
  • 7J KE. Fast Accurate Fuzzy Clusting through Reduced Precision[c]. Master's Thesis University of South Florida,1999.
  • 8Ming-Chuan HUNG, Don-Lin YANGI An Wfficient Fuzzy C- Means Clusting Algorithmic]. Proceedings of IEEE Internationa Conference on Data Mining SanJose,2001.
  • 9Zhang D Q, Chen S C. Kernel-Based Fuzzy Clustering Incorporating Spatial Constraints for Image Segmentation[c].Proceedings of the Second International Conference on Machine Learning and Cybernetics. Xi'an, 2003.
  • 10Ruan Su, Fuzzy Markovian Segmentation in Application of Magnetic Resonance Image [J]. Computer Vision and Image Understanding,2002.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部