期刊文献+

改进Frost算子在SAR图像斑点噪声抑制中的应用 被引量:7

Application of SAR Image De-speckling Method Based on Improved Frost Filter
下载PDF
导出
摘要 针对合成孔径雷达(SAR)图像斑点噪声滤波的重要性以及存在的问题,对Frost滤波算法参数进行分析,指出了该算法等权滤波器在处理含有细节结构特征时存在盲目平滑的缺点,进而提出了改进方法。利用灰度差值计算权值,综合考虑滤波窗口内的强度信息,在一定程度上解决了盲目平滑的问题。实验验证了改进算法的有效性,并以斑点噪声指数和边缘保持指数为评价准则,通过与Frost算法比较,对改进算法在去除噪声和边缘保持方面的性能做了客观评价。 Aimed at the importance of speckle filtering for SAR image and the problem of filtering already existed, the disadvantage of blindfold smoothing Frost filter with equal weight was indicated when proceeding areas with detailed features and an improved method was proposed based on the analysis of the parameters of Frost filter. The weights were computed by using the difference in gray values. The blindfold problem was solved at a certain extent because of taking account of the intensity information in the filter window, Experimentation validated this algorithm, and the Speckle Index(SI) and Edge Preservation Index(EPI) also were taken to evaluate the smoothing and edge preservation capability by comparing with the Frost filter.
出处 《测绘科学技术学报》 北大核心 2009年第4期280-282,287,共4页 Journal of Geomatics Science and Technology
关键词 合成孔径雷达 Frost算子 斑点噪声 斑点噪声指数 边缘保持指数 SAR Frost filter speckle noise SI EPI
  • 相关文献

参考文献9

  • 1LEE J S. Digital Image Enhancement and Noise Filtering by Use of Local Statisties[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1980,2(2) : 165-168.
  • 2KUAN D T, SAWCHUK A. Adaptive Noise Smoothing Filter for Images with Signal-dependent Noise[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1985,7(2) :165-177.
  • 3FROST V S, STILES J A, SHANMUGAN K S, et al. A model for radar images and its application to adaptive digital filtering of multiplicative noise[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1982,4 (2) : 157- 165.
  • 4MEER P, PARK R H, CHO K. Multi-resolution adaptive image smoothing[J]. Computer Vision and Graphic Image Processing, 1994,56 (2) : 140-148.
  • 5RANGANATH S. Image filtering using multi-resolution representations[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1991,13(5) :426-440.
  • 6DONOHO D L, IOHNSTONE I M. Adapting to unknown smoothing via wavelet shrink[J]. Journal of the American Statistical Association, 1995,90(432) : 1200-1224.
  • 7贾承丽,匡纲要.SAR图像去斑方法[J].中国图象图形学报(A辑),2005,10(2):135-141. 被引量:24
  • 8CRIMMINS T R. Geomatic Filter for Reducing Speckle [J]. Optical Engineering, 1986,25(5) :651-654.
  • 9韩春明,郭华东,王长林.SAR图像斑点噪声抑制的本质[J].遥感学报,2002,6(6):470-474. 被引量:29

二级参考文献40

  • 1F.T.乌拉比 黄培康等(译).微波遥感(第二卷,第七章)[M].,-..
  • 2Achim A, Bezerianos A, Tsakalides P. Ultrasound image denoising via maximum a posteriori estimation of wavelet coefficients [ A ].In: Proceedings of 23-rd Annual International Conference of the IEEE-EMBS ( EMBC-2001 ) [ C ], Istanbul, Turkey, 2001, 3:2553 - 2556.
  • 3Achim A, Bezerianos A, Tsakalides P. Novel Bayesian multiscale method for speckle removal in medical ultrasound images [ J ]. IEEE Transactions on Medical Imaging, 2001, 20(8) :772 -783.
  • 4Achim A, Bezerianos A, Tsakalides P. An alpha-stable based bayesian algorithm for speckle noise removal in the wavelet domain [A]. In: Proceedings of 5th IEEE EURASIP Biennial International Workshop on Nonlin. Signal and Image Processing ( NSIP-01 ) [ C ],Baltimore, Maryland, USA, 2001:1 -4.
  • 5Achim A, Bezerianos A, Tsakalides P. SAR image denoising: a multiscale robust statistical approach [ A ]. In: Proceedings of 14th International Conference on Digital Signal Processing (DSP 2002 )[ C ] , Santorini, Greece, 2002, 2:1235 - 1238.
  • 6Kuan D T, Sawchuk A A, Strand T C, et al. Adaptive restoration of images with speckle [ J ]. IEEE Transactions on Acoustics, Spoech,and Signal Processing, 1987, 35 (3) :373 - 383.
  • 7Lopes A, Nezry E, Touzi R, et al. Maximum a posteriori filtering and first order texture models in SAR images [ A ] In: Proceedings of IEEE International Gooscience and Remote Sensing Symposium [ C ],Washington, D C, 1990:2409 -2412.
  • 8Baraldi A, Parmiggiani F. A modified version of the SAR spockle filter based on structure detection [ A ]. In: Proceedings of IEEE International Geoscience And Remote Sensing Symposium, CD-ROM Version[ C ], Pasadena CA, 1994, 4:2168 - 2172.
  • 9Baraldi A, Parmiggiani F. A refine Gamma MAP SAR speckle filter with improved geometrical adaptively [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5) :1245 - 1257.
  • 10Lopes A, Brnniquel J, Sery F, et al. Optimal Bayesian texture estimators for speckle filtering and classifieation of polarimetric data [ A ]. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium [C], Singapore, 1997:1044 - 1046.

共引文献48

同被引文献65

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部