期刊文献+

融合小波变换和张量PCA的人脸识别算法 被引量:16

Face recognition algorithm based on wavelet preprocessing and tensor PCA
下载PDF
导出
摘要 张量主成分分析(PCA)方法用于人脸识别能获得比PCA方法更高的识别率.小波变换具有良好的时频分析特性,同时还能起到降维的作用.综合利用这两个算法的优点,提出了一种新的人脸识别算法,对人脸图像先采用小波变换做预处理得到4个子带图像,然后对每个子带图像用张量PCA进行特征提取,实现人脸图像的高效识别.仿真结果表明,新算法的识别率比张量PCA方法提高了6%,识别时间为张量PCA方法的35.74%. The accuracy rate of the face recognition by tensor PCA is higher than that by PCA. And wavelet has two abilities to capture localized time-frequency information and to reduce the dimension of images. According to the two advantages of the above algorithms, a new face recognition algorithm based on wavelet transform and tensor PCA is proposed. Wavelet transform is firstly used and then tensor PCA is used to extract the feature of subband images, and the efficient recognition of face images can be realized. The recognition rate of the proposed alogorithm is 6% higher than that of the tensror PCA algorithm, and the recognition time of the proposed algorithm is 35.74% that of the tensor PCA algorithm, which is illustraed in experimental results.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第4期602-607,共6页 Journal of Xidian University
基金 国家自然科学基金资助(60802075)
关键词 人脸识别 张量主成分分析 小波变换 特征提取 face recognition tensor principal component analysis wavelet transforms feature extraction
  • 相关文献

参考文献15

  • 1Chellapp A R, Wlson C L, Srohey S. Human and Machine Recognition of Faces: a Survey[J]. Proc IEEE, 1995, 83 (5) : 705-741.
  • 2刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 3Belhumeur P N, Hespanha J P, Kriengman D J. Eigenfaces vs Fisherfaces.. Recognition Using Class Specific Linearprojection[J]. IEEE Trans on Pattern Anal Machine Intell, 1997, 19(7): 711-720.
  • 4Kirby M, Sirovich L. Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103-108.
  • 5Turk M, Pentland A. Eigenfaces for Recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1) : 72-86.
  • 6Xu D, Yan S, Zhang L, et al. Concurrent Subspace Analysis[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). San Diego: IEEE, 2005:203-208.
  • 7He Xiaofei, Cai Deng, Niyogi P. Tensor Subspace Analysis[EB/OL]. [2008-7-1]. http://books, nips. cc/papers/files/ nips18/NIPS2005. 0249. pdf.
  • 8Yan Shuicheng, Xu Dong, Lin Stephen, et al. Element Rearrangement for Tensor-Based Subspace Learning[C]// Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis: IEEE, 2007.. 1-8.
  • 9Mallat S G. A Theory for Multiresolution Signal Decomposition the Wavelet Representation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence 1989 11(7) : 674-693.
  • 10Puyati W, Walairacht S, Walairacht A. PCA in Wavelet Domain for Face Recognition[C]//The 8th International Conference on Advanced Communication Technology, ICACT 2006. Phoneix Park: IEEE, 2006: 450-456.

二级参考文献69

  • 1Hjelmas E, Low B K. Face detection: A survey. Journal of Computer Vision and Image Understanding, 2001, 83(3) : 236-274.
  • 2Yang M H, Ahuja N, Kriegman D. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
  • 3Toyama K. Prolegomena for robust face tracking. MSR- Tech-Report-98-65, Microsoft, 1998.
  • 4Samal A, lyengar P. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern recognition, 1992, 25(1) : 65--77.
  • 5Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face recognition- A literature survey. CS-Tech Report-4167, University of Maryland, 2000.
  • 6Zhou J, Lu C Y, Zhang C S, Li Y D. A survey of face recognition. Acta Electronica Sinica, 2000, 28(4) : 102--106(in Chinese).
  • 7Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: A survey. Proceedings of the IEEE,1995, 83(5): 705--740.
  • 8Bledsoe W. Man-machine facial recognition. Tech Report PRI-22, Panoramic Research Inc., Palo Alto, CA, 1966.
  • 9Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs Fisherfaee: Recognition using class special linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 10Zhao W, Chellappa R, Krishnaswamy A. Discriminant analysis of principal components for face recognition. In:Proceedings of International Conference on Automatic Face and Gesture Recognition, Japan: Nara, 1998. 336-341.

共引文献116

同被引文献158

引证文献16

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部