期刊文献+

对具有高代数免疫度布尔函数的新型代数攻击 被引量:4

Algebraic attack on symmetric Boolean functions with a high algebraic immunity
下载PDF
导出
摘要 代数免疫度是衡量布尔函数抵抗代数攻击的重要性能指标,具有低代数免疫度的布尔函数是不能抵抗代数攻击的.利用分拆布尔函数的方法证明了如下结论:(1)对于对称布尔函数,即使它们具有高代数免疫度,如果使用不当仍然不能抵抗新型代数攻击;(2)对于由旋转对称函数和低次布尔函数的直和构成的布尔函数即便具有高代数免疫度,如果使用不当,也会受到新型代数攻击.提出的代数攻击需要一段连续的密钥流. Algebraic immunity is an important index to measure the ability to resist algebraic attacks. If a Boolean function has a low algebraic immunity, then it can not resist the algebraic attack. This paper gives two conclusions on some Boolean functions with a high algebraic immunity, that is, 1) for most of symmetric Boolean functions with a high algebraic immunity, if they are used inappropriately, then the attacker still can launch an efficient algebraic attack; 2)our algebraic attack is still efficient for a more general class of Boolean functions with a high algebraic immunity, which consists of a rotation symmetric Boolean function and a Boolean function with a low degree. Our algebraic attack requires a segment of the consecutive bitstream.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第4期702-707,共6页 Journal of Xidian University
基金 973项目资助(2007CB311201) 国家自然科学基金资助(60833008 60803149) 广西信息与通信技术重点实验室资助(20902)
关键词 流密码 代数免疫度 对称布尔函数 旋转对称布尔函数 stream ciphers algebraic immunity symmetric Boolean function rotation symmetric Boolean function
  • 相关文献

参考文献12

  • 1高军涛,胡予濮,李雪莲.对自缩序列生成器的错误攻击[J].西安电子科技大学学报,2006,33(5):809-813. 被引量:1
  • 2Courtois N, Meier W. Algebraic Attacks on Stream Ciphers with Linear Feedback[C]//Advances in Cryptology- Eurocrypt 2003, LNCS 2656. Berlin: Springer-Verlag, 2003: 345-359.
  • 3Li N, Qi W F. Symmetric Boolean Function with Maximum Algebraic Immunity Depending on an Odd Number of Variables [J]. IEEE Trans on Information Theory, 2006, 52(5): 2271-2273.
  • 4Li N, Qu L J, Qi W F. On the Construction of Boolean Functions with Optimal Algebraic Immunity[J]. IEEE Trans on Information Theory, 2008, 54(3): 1330-1334.
  • 5Braeken A, Preneel B. On the Algebraic Immunity of Symmetric Boolean Functions[C]//Proc Indocrypt 2005, LNCS 3797. Berlin: Springer-Verlag, 2005: 35-48.
  • 6Armknecht F, Krause M. Algebraic Attacks on Combiners with Memory[C3//Advances in Cryptography-Crypto 2003, LNCS 2729. Berlin: Springer-Verlag, 2003: 162-175.
  • 7Dalai D K, Maitra S. Reducing the Number of Homogeneous Linear Equations in Finding Annihilators[C]//Sequences and Their Applications-SETA 2006, LNCS 4086. Berlin: Springer-Verlag, 2006: 376-390.
  • 8Gupta D K, Maitra K C. Cryptographically Significant Boolean Functions: Construction and Analysis in Terms of Algebraic Immunity[C]//FSE 2005, LNCS 3557. Berlin: Springer-Verlag, 2005: 98-111.
  • 9Dalai D K, Maitra S, Sarkar S. Basic Theory in Construction of Boolean Functions with Maximum Possible Annihilator Immunity [J]. Design, Codes and Cryptography, 2006, 40(1): 41-58.
  • 10Sarkar S, Maitra S. Construction of Rotation Symmetric Boolean Functions on Odd Number of Variables with Maximum Algebraic Immunity[C]//AAECC2007, LNCS 4851. Berlin: Springer-Verlag, 2007: 271-280.

二级参考文献1

同被引文献30

  • 1王新年,冯珊,周凯波,周剑岚.自免疫网络安全防御体系研究[J].武汉理工大学学报,2006,28(6):90-92. 被引量:4
  • 2CHEPYZHOV V, SMEETS B. On a fast correlation attack on stream ciphers[ C ] // Advance in Cryptology--EUROCRYPT'91 Proceedings, Lecture Notes in Computer Science, Berlin : Springer-Verlag, 1991 : 176-185.
  • 3MEIER W, STAFFELBACH O. Fast correlation attacks on certain stream ciphers [ J]. Journal of Cryptology, 1989, 1 (3) : 159-176.
  • 4CARLET C, DALAI D, GUPTA K, et al. Algebraic immunity for cryptographically significant Boolean functions: analysis and construction[J]. IEEE Trans Information Theory, 2006, 52(7) : 3105-3121.
  • 5CARLET C. Recursive lower bounds on the nonlinearity profile of Boolean functions and their applications[J].IEEE Trans. Inform. Theory, 2008, 54(3):1262-1272.
  • 6GUANGHONG S, CHUANKUN W. The lower bounds on the second order nonlinearity of three classes of Boolean functions wih high nonlinearity[ J]. Information Sciences, 2009, 179: 267-278.
  • 7GANGOPADHYAY S, SARKAR S, TELANG R. On the Lower Bounds of the Second Order Nonlinearity of some Boolean Functions[J]. Information Sciences, 2010, 180(2) : 266-273.
  • 8GODE R, GANGOPADHYAY S. On second order nonlinearities of cubic monomial Boolean functions[ DB/OL]. [ 2009-10- 21]. http://eprint, iacr. org/2009/502, pdf.
  • 9CANTEAUT A, CHARPIN P, KYUREGHYAN G M. A new class of monomial bent functions [J]. Finite Fields and Their Applications, 2008, 14 : 221-241.
  • 10LIDL R, NIEDERREITER H. Finite fields[M]. Cambridge: Combridge University Press, 1983: 54-57, 107.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部