期刊文献+

一种改进的M-Estimators基础矩阵鲁棒估计法 被引量:6

An Improved Robust Method of M-Estimators
下载PDF
导出
摘要 针对原M-Estimators算法完全依赖由线性最小二乘法估计得到的矩阵初始值,精度较低稳定性差的缺点,提出了一种改进的M-Estimators算法。通过考虑匹配点与对应极线的距离,计算求得较原M-Estimators算法更加精确的矩阵初始值,再利用此初始值剔除掉原匹配点集中的错误匹配点及坏点,最后运用Torr-M-Estimators法对新的匹配点集进行非线性优化计算,得到了真正的匹配点对,精确恢复了对极几何关系。以大量的模拟数据和真实图像进行了实验,给出了该算法与其他鲁棒性算法的比较结果,实验结果表明,该算法在误匹配以及高斯噪声存在的情况下,提高了基础矩阵的估计精度,并且同时具有很好的鲁棒性。 Considering the dissatisfactory precision and stability of primary M-Estimators, which depends entirely on the original matrix obtained by the method of least squares, an improved M-Estimators algorithm for estimating the fundamental matrix was studied. The new algorithm obtained a more precise original matrix by calculating the distances between the matching points and the corresponding epipolar lines. Then the mismatch and outliers in the original matching points set were eliminated through the precise original matrix and the nonlinear optimization for the new matching points set was carried out with Torr-M-Estimators. Finally the accurate matching points set and the epipolar geometry can be gained. Through a mass of experiments on simulated data and real images in the case of mismatching and Gaussian noise, the comparing results between the algorithm and other robust methods indicate the algorithm not only improves the estimating precision but also shows the good robustness.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第8期1663-1668,共6页 Journal of Image and Graphics
基金 香港中文大学科研基金项目(2050345)
关键词 基础矩阵 鲁棒性 精确初始矩阵 M估计法 最小中值法 fundamental matrix, robustness, precise original matrix, M-Estimators, LMeds(least median of squares)
  • 相关文献

参考文献14

二级参考文献50

  • 1陈付幸,王润生.基础矩阵估计的聚类分析算法[J].计算机辅助设计与图形学学报,2005,17(10):2251-2256. 被引量:9
  • 2郭继东,向辉.一个基本矩阵的鲁棒估计算法[J].计算机应用,2005,25(12):2845-2848. 被引量:5
  • 3Brandt S. Maximum likelihood robust regression with known and unknown residual models. In: Proc. of the ECCV 2002. 2002.97-102.
  • 4Murray PTD. The development and comparison of robust methods for estimating the fundamental matrix. Int'l Journal of Computer Vision, 1996. 1-33.
  • 5Zhang ZY. Determining the epipolar geometry and its uncertainty: A review. Int'l Journal of Computer Vision, 1998,27(2):161-195.
  • 6Fischler MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. CACM, 1981,24(6):381-395.
  • 7Rousseeuw PJ. Robust Regression and Outlier Detection. New York: John Wiley & Sons, 1987.
  • 8Torr PHS, Murray DW. Outlier detection and motion segmentation. SPIE 93, 1993. 432-443.
  • 9Stewart CV. MINPRAN: A new robust operator for computer vision. IEEE Trans. on Pattern Analysis and Machine Intelligence,1995,17(10):925-938.
  • 10Torr PHS, Zisserman A. MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understand, 2000,78:138-156.

共引文献124

同被引文献49

  • 1董明利,王振华,祝连庆,孙雨南,吕乃光.基于RANSAC算法的立体视觉图像匹配方法[J].北京工业大学学报,2009,35(4):452-457. 被引量:10
  • 2陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 3李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 4向长波,刘太辉,宋建中.基本矩阵的鲁棒贪心估计算法[J].计算机辅助设计与图形学学报,2007,19(5):651-655. 被引量:11
  • 5R Hartley, A Zisserman, I Ebrary. Multiple View Geometry in Computer Vision [M]. Cambridge: Cambridge University Press, 2003. 239.
  • 6X Armangu, J Salvi. Overall view regarding fundamental matrix estimation [J]. Image and Vision Computing, 2003, 21 (2)205-220.
  • 7M A Fischler, R C Bolles. Random sample consensus: paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981, 24(6) : 381-395.
  • 8Z Zhang. Determining the epipolar geometry and its uncertainty: a review [J]. International Journal of Computer Vision, 1998, 27 (2): 161-195.
  • 9P H S Torr, D W Murray. The development and comparison of robust methods for estimating the fundamental matrix [J]. International Journal of Computer Vision, 1997, 24 ( 3 ):271-300.
  • 10H Pan. A direct closed-form solution to general relative orientation of two stereo views [J]. Digital Signal Processing, 1999, 9(3): 195-221.

引证文献6

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部