期刊文献+

一种小样本集可信向量机3S-CSVM

A Small Sample Set Confidence Support Vector Machine 3S-CSVM
下载PDF
导出
摘要 利用支持向量机中的拉格朗日系数,从系数所表达的意义出发,根据Kolmogorov算法随机性理论,定义了可信度和可靠性,提出了一种小样本集可信向量机,该向量机在预测对象类别的同时,给出本次预测的可信程度和可靠性,丰富了支持向量机的输出信息。同时通过在预测的过程中有限增加训练集中的有用特征信息,提高了预测的准确率,在只有少量训练样本的情况下具有较好的性能。 A small sample set confidence SVM is put forward based on Kolmogorov's algorithmic theory of randomness using the Lagrangian coefficients of support vector machine according to their physical meanings. The confidence and the credibility of prediction are subsequently defined. When predicting,this machine can output the confidence and the credibility as well as the label of testing examples. And correction portion is improved by adding some testing sample whose characters are helpful for machine into the training sample set while prediction.
出处 《计算机与网络》 2009年第13期36-38,43,共4页 Computer & Network
关键词 小样本集可信向量机 可信度 可靠性 随机性理论 small sample set confidence support vector machine confidence credibility algorithmic theory of randomness
  • 相关文献

参考文献7

  • 1NelloCristianini JohnShawe-Taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 2邱德红,陈传波,金先级.基于算法随机性理论和奇异描述的置信学习机器[J].计算机研究与发展,2004,41(9):1586-1592. 被引量:10
  • 3GAMMERMAN A, VOVK V. Prediction algorithms and confidence measures based on algorithmic randomness theory[J].Theoretical Computer Science, 2002(287):209-217.
  • 4GAMMERMAN A ,PROEDROU K, NOURETDINOV I, et al, Transductive Confidence Machines for Pattern Recognition, European Conference on Machine Learning[C].Lecture Notes in Artificial Intelligence, 2002:381-390.
  • 5MOORE A W. Discrete Content-Based Classi Cation. A Dataset [R]. Technical Report, Intel Research, Cambridge, 2005.
  • 6薛贞霞,刘三阳,刘万里.基于可信度的渐进直推式支持向量机算法[J].厦门大学学报(自然科学版),2008,47(6):806-811. 被引量:2
  • 7董辉,傅鹤林,冷伍明.支持向量机的时间序列回归与预测[J].系统仿真学报,2006,18(7):1785-1788. 被引量:63

二级参考文献32

  • 1赵英刚,陈奇,何钦铭.一种基于支持向量机的直推式学习算法[J].江南大学学报(自然科学版),2006,5(4):441-444. 被引量:8
  • 2廖东平,姜斌,魏玺章,黎湘,庄钊文.一种快速的渐进直推式支持向量机分类学习算法[J].系统工程与电子技术,2007,29(1):87-91. 被引量:12
  • 3沈新宇,许宏丽,官腾飞.基于直推式支持向量机的图像分类算法[J].计算机应用,2007,27(6):1463-1464. 被引量:10
  • 4X F Lin, X Q Ding, M Chen, et al. Adaptive confidence transform based classifier combination for Chinese character recognition. Pattern Recognition Letters, 1998, 19(10): 975~988
  • 5T K Ho, J J Hull, S N Srihari. Decision combination in multiple classifier systems. IEEE Trans on Pattern Analysis and Machine Intelligence, 1994, 16(1): 66~75
  • 6A Gelman, J B Carlin, H S Stern, et al. Bayesian Data Analysis. London: Chapman & Hall, 1995
  • 7T Melluish, C Saunders, I Nouretdinov, et al. Comparing the Bayes and typicalness frameworks. The 12th European Conf on Machine Learning/5th European Conf on Principles and Practice of Knowledge Discovery in Databases. Freiburg, Germany, 2001
  • 8M D Richard, R P Lippmann. Neural network classifiers estimate Bayesian a posterior probabilities. Neural Computation, 1991, 3(4): 461~483
  • 9C L Liu, M Nakagawa. Precise candidate selection for large character set recognition by confidence evaluation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(6): 636~642
  • 10M Li, Paul Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. New York: Springer-Verlag, 1997

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部