期刊文献+

基于Camshift和粒子滤波的老人陪护机器人人脸跟踪 被引量:3

Face Tracking for Elderly Companion Robot Using Camshift Algorithm and Particle Filter
下载PDF
导出
摘要 使用Camshift算法进行老人陪护机器人的人脸跟踪,并针对家居室内环境和人脸跟踪的非线性非高斯的特点,引入粒子滤波的方法进行运动预测估计,对己有颜色特征提取算法进行改进,从而提高了跟踪的准确性和抗干扰能力。最后,在家庭室内环境下的实验验证了该视觉跟踪控制方法的实时性和有效性,为老人陪护机器人的交互提供了一种参考方案。 A real--time face tracking method for the elderly companion robot was presented based on the Camshift algorithm and particle filter algorithm. Camshift algorithm was applied to find the peak of probability distributions and to estimate the center and size of the tracking window. According to the complexity of the house environment and the features of face tracking's non--Gaussian non-- linear, the particle filter was used to estimate the movement tendency and to improve the accuracy and the ability of anti--interference. Experimental results show that the proposed method can track face robustly in the indoor environment, which illustrates the real time and efficiency.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第16期1904-1908,共5页 China Mechanical Engineering
基金 国家863高技术研究发展计划资助项目(2007AA041701 2007AA041702)
关键词 老人陪护机器人 人脸跟踪 CAMSHIFT 粒子滤波 elderly companion robot face tracking Camshift particle filter
  • 相关文献

参考文献12

  • 1Fong T, Nourbakhsh I, Dautenhahn K. A Survey of Socially Interactive Robots[J]. Robotics & Autonomous Systems, 2003, 42 (3/4) : 143-166.
  • 2Yang M, Ahuja N, Kriegman D. Detecting Faces in Images: a Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (1):34-58.
  • 3Comaniciu D, Ramesh V, Meer P. Real- time Tracking of Nonrigid Objects Using Mean Shift [C]//IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, South Carolina: IEEE, 2000:142-149.
  • 4Comanieiu D, Ramesh V. Mean Shift and Optimal Prediction for Efficient Object Tracking[C]//IEEEConference on Image Processing. Vancouver, Canada: IEEE, 2000.. 70-73.
  • 5Bradski G R. Real Time Face and Object Tracking as a Component of a Perceptual User Interface[C]// IEEE Workshop on Applications of Computer Vision. Princeton: IEEE,1998:214-219.
  • 6夏东,李吉成,李秋华.一种采用混合高斯模型与贝叶斯判别的彩色图像人脸检测方法[J].电光与控制,2005,12(6):56-59. 被引量:2
  • 7Sanjeev M, Smon M. A Tutorial on Particle Filters for Online Nolinear/non-Gaussian Bayesian Tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 8Kailath T. The Divergence and Bhattacharyya Distance Measures in Signal Selection[J]. IEEE Transactions on Communication Technology, 1967, 15 (1) : 52-60.
  • 9Wang Zhaowen, Yang Xiaokang, Xu Yi,et al. Camshift Guided Particle Filter for Visual Tracking [C]// IEEE Workshop on Signal Processing Systems. Shanghai, 2007 : 301-306.
  • 10Shan C, Wei Y, Tan T, et al. Real Time Hand Tracking by Combining Particle Filtering and Mean Shift [C]//IEEE International Conference on Automatic Face and Gesture Recognition. Seoul, 2004: 669-674.

二级参考文献5

  • 1FE′RAUD R, BERNIER O J. VILLET J-E,et al. A Fast and Accuract Face Detector Based on Neural Networks[J].IEEE Trans.Pattern Analysis and Machine Intelligence, 2001,22(1):42-43.
  • 2JUELL P. MARSH R. A Hierarchical Neural Network for Human Face Detection[J].Pattern Recognition, 1996,29(5):781-787.
  • 3JONES M J, REHG J M. Statistical Color Models with Application to Skin Detection[J]. Proc. IEEE Conf. Computer Vision and Pattern Recognition,1999,1:274-280.
  • 4SUN Q B, HUANG W M, WU J K. Face Detection Based on Color and Local Symmetry Information[A]. Proc. Third Int'l Conf.Automatic Face and Gesture Recognition[C],1998.
  • 5LIU C J. A Bayesian Discriminating Features Method for Face Detection[J].IEEE Transactions On Pattern Analysis And Machine Intelligence, 2003,25(6):4-13.

共引文献1

同被引文献26

  • 1吴晓娟,翟海亭,王磊,徐力群.一种改进的CAMSHIFT手势跟踪算法[J].山东大学学报(工学版),2004,34(6):120-124. 被引量:14
  • 2张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 3彭娟春,顾立忠,苏剑波.基于Camshift和Kalman滤波的仿人机器人手势跟踪[J].上海交通大学学报,2006,40(7):1161-1165. 被引量:21
  • 4Qi-Cong Wang, Yuan-Hao Gong, Chen-Hui Yang, et al Robust object tracking under appearanc'e chang condi tions [J]. International Journal of Automation and Cornputing,2010,7(1): 31--38.
  • 5Nummiaro K,Koller-Meier E,Van GO01 L. Object track- ing with an adaptive color-based particle filter[C]//First International Workshop on Generative-Model Based Vi- sion, in Conjunction with ECCV' 02. Copenhagen, Den mark, 2002: 53-- 60.
  • 6Jukka Iivarinen, Markus Peura, Jaakko Srel,et al. Com parison of combined shape descriptors for irregular ob jects[C]// 8th British Machine Vision Conference, BM VC'97. Essex, England, 1997:430--439.
  • 7Yilmaz A, Javed O, Shah M. Object tracking: A survcy [ J ]. ACM Computing Surveys, 2006,38 (4) : 1-45.
  • 8Xu Xinyu, Li Baoxin. Adaptive Rao-Blackwellized particle filter and its evaluation for tracking in surveillance [ J ]. IEEE Transactions on Image Processing, 2007, 16 ( 3 ) : 838 -849.
  • 9Hare S, Saffari A, Torr P H S. Struck: Structured output tracking with kernels[ C]//ICCV. 2011:263-270.
  • 10Zou Tengyue, Tang Xiaoqi, Song Bao. Improved Camshift tracking algorithm based on silhouette moving detection [ C]//The Third International Conference on Multimedia Information Networking and Security. 2011 : 11-15.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部