期刊文献+

面向对象土地覆被图像组合分类方法 被引量:3

Combinational approach of object oriented land cover image classification
下载PDF
导出
摘要 研究了支持向量机在面向对象土地覆被图像分类中的应用技术,提出采用最小二乘支持向量机(LSSVM)与模糊灰色关联度联合评估(FG)相结合的一种新的组合分类方法简记FG-LSSVM,为土地覆被分类提供一种可行的高精度分类途径。根据图像上不同对象的空间尺度和光谱值特征,基于稳健的核密度梯度分割算法提取具有任意形状和唯一标识的均质对象后,为了比较提出方法的性能,采用原始对象样本依次验证了3个面向对象分类方法,即标准支持向量机方法、以模糊贴近度作为模糊因子的模糊支持向量机方法和传统K最近邻面向对象分类方法。实现了一个高精度面向对象土地覆被图像分类信息系统。试验结果表明:提出的FG-LSSVM面向对象方法相比标准支持向量机、模糊支持向量机与K最近邻方法试验精度约提高2.4%左右。提出的方法在识别效果上,符合研究区实际分类应用的要求。 Applied technique of object-based land cover image classification for support vector machines were studied.And a combinational approach was estiblished,namely FG-LSSVM,with least squares support vector machines(LSSVM)and fuzzy and grey degree of correlation(FG),which was a feasible high-precision image classification algorithm for land cover.According to the spatial scale and spectral characteristics of different targets on rectified image,the number of objects was automatically determined by using the stable gradient of kernel density algorithm,in which local objects with unique identifier in arbitrary shapes were picked up.To compare the performance of the presented method with that of other object oriented methods,with original samples,three models were successively verified,which were standard support vector machines(SVM)and the fuzzy nearness improved support vector machines(FSVM),and the traditional K nearest neighbor(KNN)object-oriented methods.A high precision land cover image classification system was established with the proposed approach.The results showed the total precision of FG-LSSVM was about 2.4%higher than that of SVM,FSVM and KNN object-oriented methods in the study area.The proposed method also meets the requirements of land cover image classification in respect of efficiency and effects.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2009年第7期108-113,F0003,共7页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家自然科学基金(30872073) 973计划(2007CB407203)
关键词 面向对象程序 最小二乘支持向量机 关联理论 土地覆被 均值漂移分割 灰色关联度 object-oriented classification least squares support vector machines relevance theory land cover mean shift segmentation grey degree of correlation
  • 相关文献

参考文献14

  • 1Benz U C, Hofmann P, Willhauck G, et al.. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J]. ISPRS Journal of Photogrammetry and RemoteSensing, 2004, 58(3-4): 239-258.
  • 2张毓晋.图像工程(中册):图像分析[M].北京:清华大学出版社,2005:73-75.
  • 3Tzotsos A, Argialas D. Support vector machine classification for object-based image analysis[A]. //Blaschke T, Lang S, Hay G J. Object-Based Image Analysis[M]. Berlin Heidelberg: Springer, 2008: 663-677.
  • 4Chang C C, Lin C J. LIBSVM: a library for support vector machines[EB/OL], http://www. csie. ntu. edu. tw/- ejlin / libsvm, 2008-06-17.
  • 5Rosenblatt M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3): 832-837.
  • 6Parzen E. On estimation of a probability density function and mode [J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076.
  • 7Fukunaga K, Hostetler L D. The estimation of the gradient of a density function, with application in pattern recognition [J]. IEEE Transactions on Information Theory, 1975, IT-21(1): 32-40.
  • 8Cheng Y. Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
  • 9Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 10李耀明,赵湛,张文斌,李洪昌.基于Mean shift的筛面物料颗粒目标运动轨迹跟踪[J].农业工程学报,2009,25(5):119-122. 被引量:16

二级参考文献31

  • 1李丽勤,高焕文.一种非刚性运动目标图像跟踪的改进算法[J].农业工程学报,2004,20(4):17-20. 被引量:2
  • 2邓春香,陶栋材,高静萍.气流清选风车中谷物的动力学特性和影响因素的研究[J].农业工程学报,2006,22(4):121-125. 被引量:25
  • 3李杰,闫楚良,杨方飞.联合收割机振动筛的动态仿真与参数优化[J].吉林大学学报(工学版),2006,36(5):701-704. 被引量:29
  • 4Dorin Comaniciu,Peter Meer.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 5Cheng Yizong.Mean shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 6Mustafa Ozden,Ediz Polat.A color image segmentation approach for content-based image retrieval[J].Pattern Recognition,2007,40 (4):1318-1325.
  • 7Liu Tangwei,Zhou Huiyu,Lin Faquan,et al.Improving image segmentation by gradient vector flow and mean shift[J].Pattern Recognition Letters,2008,29(1):90-95.
  • 8Venkatesh Babu,Patrick Pérez,Patrick Bouthemy.Robust tracking with motion estimation and local Kernel-based color modeling[J].Image and Vision Computing,2007,25(8):1205-1216.
  • 9Ning Song Peng,Jie Yang,Zhi Liu.Mean shift blob tracking with kernel histogram filtering and hypothesis testing[J].Pattern Recognition Letters,2005,26(5):605-614.
  • 10Kevin Nickels,Seth Hutchinson.Estimating uncertainty in SSD-based feature tracking[J].Image and Vision Computing,2002,20(1):47-58.

共引文献46

同被引文献23

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部