期刊文献+

Optical Properties of Neutral and Charged Low Band Gap Alternating Copolyfluorenes: TD-DFT Investigation

含时密度泛函理论研究低带隙的中性和带电的交替共聚芴的光学特性
下载PDF
导出
摘要 Electronic structure and optical properties of neutral and charged low band gap alternating copolyfluorenes (Green 1, which is based on alternating repeating units consisting of alkyl-substituted fluorene and a thiophene-[1,2,5]thiadiazolo-[3,4]quinoxaline-thiophene (T-TDQ-T) unit were investigated theoretically with time-dependent density functional theory (TD-DFT) method, and their excited state properties were further analyzed with 2D site and 3D cube representations. For neutral Green 1, the band gap, binding energy, exciton binding energy, and nuclear relaxation energy were obtained. The transition dipole moments of neutral and charged Green 1 are compared using 3D transition density, which reveals the orientation and strength of transition dipole moments. The charge redistribution of neutral and charged Green 1 upon excitation are displayed and compared with 3D charge difference density. The electron-hole coherences of neutral and charged Green 1 upon excitation are investigated with 2D site representation (transition density matrix). The excited state properties of neutral Green 1 calculated with TD-DFT method are compared with that calculated with ZINDO method, which reveals the importance of electron-electron interaction (in TD-DFT) in the excited state properties.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第4期389-394,447,共7页 化学物理学报(英文)
基金 ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10505001, No.10875055, No.10874234, and No.10703064) and the Educational Department of Liaoning Province (No.2008228).
关键词 Electron-hole coherence Charge transfer Neutral and charged low band gap Copolyfluorene 电荷空穴相干 电荷转移 中性和带电的低带隙 共聚芴
  • 相关文献

参考文献41

  • 1J. Roncali, Chem. Rev. 97, 173 (1997).
  • 2A. Dhanabalan, J. K. J. van Duren, P. A. van Hal J. L. J. van Dongen, and R. A. J. Janssen, Adv.Funct Mater. 11,255 (2001).
  • 3F. L. Zhang, E. Perzon, X. J. Wang, F. Oawald, F Langa, S. Admassie, M. R. Andersson, and O. Inganas Adv. Funct. Mater. 15, 1665 (2005).
  • 4N. K. Persson, H. Arwin, and O. Inganas, J. Appl Phys. 97, 034503 (2005).
  • 5M. Svensson, F. L. Zhang, S. Veenstra, W. J. H Verhees, J. C. Hummelen, J. M. Kroon, O. Inganas and M. R. Andersson, Adv. Mater. 15, 988 (2003).
  • 6E. Perzon, X. J. Wang, F. L. Zhang, W. Mammo, J. L. Delgado, P. de la Cruz, O. Inganas, F. Langa, and M. Andersson, Synthetic Metals 154, 53 (2005).
  • 7X. J. Wang, E. Perzon, F. Oawald, F. Langa, S. Admassie, M. R. Andersson, and O. Inganas, Adv. Funct. Mater. 15, 1665 (2005).
  • 8X. J. Wang, E. Perzon, J. L. Delgado, P. de la Cruz, F. L. Zhang, F. Langa, M. R. Andersson, and O. Inganas, Appl. Phys. Lett. 85, 5081 (2004).
  • 9N. K. Persson, M. T. Sun, P. Kjellberg, T. Pullerits, and O. Inganas, J. Chem. Phys. 123, 204718 (2005).
  • 10M. X, Chen, X. Crispin, E. Perzon, M. R. Andersson, T. Pullerits, M. R. Andersson, O. Inganas, and M. Berggren, Appl. Phys. Lett. 87, 252105 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部