1Anderegg G, Ripperger H (1989). Correlation between metal complex formation and biological activity of nicotianamine analogues. J Chem Soc Chem Commun, 10:647-650.
2Assuncao AGL, da Costa Martins P, De Folter S, Vooijs R, Schaat H, Aarts MGM (2001). Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ, 24:217-226.
3Benes I, Schreiber K, Ripperger H, Kirsceiss A (1983). Metal complex formation by nicotianamine, a possible phytosiderophore. Experientia, 39:261-262.
4Cheng LJ, Wang F, Shou HX, Huang FL, Zheng LQ, He F, Li JH, Zhao FJ, Ueno D, Ma IF et al (2007). Mutation in nicotianamine amiontransferase stimulated the Fe(Ⅱ) acquisition system and led iron accumulation in rice. Plant Physiol, 145: 1647-1657.
5Clemens S (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212:475-486.
6Cobbett C, Goldsbrough P (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol, 123:825-832.
7Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009). Metal movement within the plant: contribution of nicotianamine and yellow stripe-1 like transporters. Ann Bot, 103:1-11.
8Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat J-F, Walker EL (2001). Maize yellow stripe1 encodes a membrane protein directly involved in Fe(Ⅲ) uptake. Nature, 409:346-349.
9Gendre D, Czernic P, Conejero G, Pianelli K, Briat J-F, Lebrun M, Mari S (2007). TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encode a nicotianamine-Ni/Fe transporter. Plant J, 49:1-15.
10Grotz N, Guerinot ML (2006). Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta, 1763: 595-608.
4Noma M, Noguchi M, Tamaki E. A new amino acid. Nicoti- anamine from tobacco leaves [ J ]. Tetrahedron Letters, 1971, 22(12) : 2017 -2020.
5Kristensen I, Larsen PO. Azetidine-2-carboxylic acid deriva-tires from seeds of Fagus silvatica L. and a revised structure for nicotiansanine [ J ]. Phytochmistry, 1974,13 ( 12 ) : 2791 - 2798.
6Inoue H, Higuchi K, Takahashi M, et al. Three rice nicotian- amine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are ex- pressed in ceils involved in long-distance transport of iron and differentially regulated by iron[ J]. Plant Journal, 2003 (3) , 36:366-381.
7Rudolph A, Becker R, Scholz G, et al. The occurrence of the amino acid nicotianamine in plants and microorganisms: a re- investigation [ J ]. Biochemie und Physiologie der Pflartzen, 1985, 180(2) : 557 -563.
8Noma M, Moguchi M. Occurrence of nicotianamine in higher plants[J]. Phytochemistry, 1976, 15(4): 1701-1702.
9Whral MS, Heller LI, Norvell WA, et al. Reversed-phase liq- uid chromatographic determination of phytometallophores from Strategy II Fe-uptake species by 9-fluorenylmethyl chlorofor- mate fluorescence [ J ]. Journal of Chromatography A, 2002, 942(1) : 177 -183.
10Kawai S, Sato Y, Takagi S. Separation and determination of mugineic acid and its analogues by high-performance liquid chromatography[J]. Journal of Chromatography A, 1987, 391 ( 1 ) : 325 - 327.