期刊文献+

平面框架几何非线性分析的修正拉格朗日-协同转动联合法 被引量:4

A COROTATIONAL UPDATED LAGRANGIAN FORMULATION FOR GEOMETRICALLY NONLINEAR ANALYSIS OF 2D FRAMES
原文传递
导出
摘要 提出了一种几何非线性有限元分析平面框架的方法。应用修正拉格朗日(UL)法计算单元的增量节点位移;计算增量节点力采用了协同转动法,使用的协同构形(Cr)是由前一个平衡构形(C1)经刚体运动后得到。以单元节点的增量自然变形为参数表示出Cr构形下的虚功方程;推导得出了C1构形中单元增量节点位移向量与Cr构形中节点增量自然变形之间的关系;把得到的关系式代入虚功方程,得Cr构形中计算增量节点力的切向刚度矩阵;所得的切线刚度矩阵能通过刚体检验。考虑了加载变形对后续分析的影响,导致切向刚度矩阵增加了与加载变形有关的刚度矩阵。算例结果表明:提出的方法可以采用较少单元达到UL法同样的计算精度;加载变形产生的刚度矩阵能有效地提高计算效率;但变形较大时,加载变形产生的刚度矩阵会导致膜锁。 A method is presented for geometrically nonlinear analysis of 2D frames. An updated Lagrangian (UL) formulation is used to calculate the incremental nodal displacements, and incremental nodal forces are recovered by a corotational formulation whose configuration (Cr) is derived from a rigid-body motion of the last calculated configuration (C1) in equilibrium. Firstly, the equation of virtual work is expressed in terms of incremental nodal natural deformations in Cr; then, the relations are deduced between the incremental nodal natural deformations in Cr and the incremental nodal displacement vector in C1. Adopting the relations in the equation of virtual work, the tangent stiffness matrix for incremental nodal forces is obtained for Cr, and it can pass a rigid-body test. The analysis has considered the loaded deformations which will result in an additional matrix in the tangent stiffness matrix. The numerical examples show that: with fewer elements, the presented method can achieve similar precision to UL formulation; the matrix with respect to the loaded deformation can effectively improve the efficiency, but it may result in membrane locking if the deformation is large.
机构地区 浙江大学土木系
出处 《工程力学》 EI CSCD 北大核心 2009年第8期100-106,130,共8页 Engineering Mechanics
关键词 结构分析 有限元法 修正拉格朗日法 协同转动法 几何非线性 膜锁 structural analysis finite element method updated Lagrangian formulation corotational formulation geometrical nonlinearity membrane locking
  • 相关文献

参考文献12

  • 1李忠学.采用矢量型转动变量的二维协同转动梁元法[J].浙江大学学报(工学版),2006,40(7):1219-1223. 被引量:2
  • 2Crisfield M A. Non-linear finite element analysis of solids and structures, advanced topics [M]. Chichester, England: John Wiley & Sons, 1997.
  • 3Teh L H, Clarke M J. Corotational and lagrangian formulations for elastic three-dimensional beam finite elements [J]. Journal of Constructional Steel Research, 1998, 48(2-3): 123- 144.
  • 4Yang Y-B, McGuire W. Stiffness matrix for geometric nonlinear analysis [J]. Journal of Structural Engineering, 1986, 112(4): 853-877.
  • 5Yang Y B, Lin S P, Leu L J. Solution strategy and rigid element for nonlinear analysis of elastically structures based on updated Lagrangian formulation [J]. Engineering Structures, 2007, 29(6): 1189- 1200.
  • 6Washizu K. Variational methods in elasticity and plasticity [M]. 2nd ed. Oxford, England: Pergamon Press, 1982.
  • 7Williams F W. An approach to the non-linear behaviour of the members of a rigid jointed plane framework with finite deflections [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1964, 17(4): 451 - 469.
  • 8Simo J C, Vu-Quoc L. A three-dimensional finite-strain rod model, part Ⅱ: Computational aspects [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 58(1): 79-116.
  • 9Ritto-Correa M, Camotim D. On the arc-length and other quadratic control methods: established, less known and new implementation procedures [J]. Computers & Structures, 2008, 86(11-12): 1353-1368.
  • 10Clarke M J, Hancock G J. A study of incremental-iterative strategies for non-linear analyses [J]. International Journal for Numerical Methods in Engineering, 1990, 29(7): 1365- 1391.

二级参考文献10

  • 1CRISFIELD M A.Nonlinear finite element analysis of solid and structures[M].Chichester:Wiley,1996.
  • 2HSIAO K M,HORNG H J,CHEN Y R.A corotational procedure that handles large rotations of spatial beam structures[J].Computers & Structures,1987,27:769-781.
  • 3IZZUDDIN B A.Conceptual issues in geometrically nonlinear analysis of 3D framed structures[J].Computer Methods in Applied Mechanics and Engineering,2001,191:1029-1053.
  • 4SIMO J C.(Symmetric) Hessian for geometrically nonlinear models in solid mechanics.Intrinsic definition and geometric interpretation[J].Computer Methods in Applied Mechanics and Engineering,1992,96:189-200.
  • 5LI Z X,IZZUDDIN B A.Application of vectorial rotational variables in large displacement analysis of structures[C]//SHEN Z Y.The Fourth International Conference on Advances in Steel Structures.Oxford:Elsevier Ltd,2005:1501-1506.
  • 6IZZUDDIN B A,LI Z.A co-rotational formulation for large displacement analysis of curved shell[C]// The 18th Australasian Conference on the Mechanics of Structures & Materials.London:Taylor & Francis Group,2004:1247-1253.
  • 7WILLIAMS F W.An approach to the nonlinear behaviour of the members of a rigid jointed plane framework with finite deflections[J].Quarterly Journal of Mechanics and Applied Mathematics,1964,17:451 -469.
  • 8PAPADRAKAKIS M.Post-buckling analysis of spatial structures by vector iteration methods[J].Computers & Structures,1981,14:393-402.
  • 9CLARKE M J,HANCOCK G J.Study of incrementaliterative strategies for non-linear analyses[J].International Journal for Numerical Methods in Engineering,1990,29:1365-1391.
  • 10YANG Y B,SHIEH M S.Solution method for nonlinear problems with multiple critical points[J].AIAA Journal,1990,28:2110-2116.

共引文献1

同被引文献38

  • 1周慎杰,王锡平,李文娟,王凯.履带起重机臂架有限元分析方法[J].山东大学学报(工学版),2005,35(1):22-26. 被引量:11
  • 2周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报,2006,41(6):690-695. 被引量:20
  • 3王勖成.有限单元法[M]{H}北京:清华大学出版社,2003.
  • 4Belytschko T;Liu W K;Moran B;庄茁.连续体和结构的非线性有限元[M]{H}北京:清华大学出版社,200217-45.
  • 5Hsiao K M,Hou F Y. Nonlinear finite element analy-sis of elastic frames[J].{H}Computers & Structures,1987,(4):693-701.
  • 6Wempner G. Finite elements,finite rotations and small strains of flexible shells[J].{H}International Journal of Solids and Structures,1969.117-153.
  • 7Argyris J H,Bahmer H,Doltsnis J S. Finite ele-ment method-the natural approach[J].{H}Computer Methods in Applied Mechanics and Engineering,1979.1-106.
  • 8Crisfield M A,Moita G F. A unified co-rotational framework for solids,shell and beams[J].Interna-tional Journal of Solid and Structures,1996,(20-22):2969-2992.
  • 9Felippa C A,Haugen B. A unified formulation of small-strain corotational finite elements:I.Theory[J].{H}Computer Methods in Applied Mechanics and Engineering,2005,(21-24):2285-2335.
  • 10Argyris J H. An excursion into large rotations[J].Computer Methods in Applied Mechanics and Engi-neering,1982,(5):85-155.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部