期刊文献+

基于AFM的PCL纳米纤维动力学实验和尺寸效应研究 被引量:2

AN AFM-BASED DYNAMICS INVESTIGATION INTO THE SIZE-DEPENDENT BEHAVIOR OF PCL NANOFIBERS
原文传递
导出
摘要 该文通过静电纺丝法制备了直径范围在100nm-500nm之间的PCL(Poly(ε-caprolactone))纳米纤维。并成功使用原子力显微镜(AFM)测量了单根纳米纤维的动力学性能,发现PCL纳米纤维有显著的尺度效应,弹性模量随直径的减小而增加。为解释该现象,该文发展了包含应变梯度效应的两端固支纤维振动模型,利用该模型对PCL纳米纤维的尺寸效应进行了分析。结果显示,当材料尺度参数leff=78nm时,新模型与实验结果吻合良好。而应变梯度效应可忽略时,新的振动方程退化为经典的Euler-Bernoulli振动方程。 This paper presents a dynamic investigation of the polycaprolactone (PCL) nanofibers of diameters in the 100-500 nm range that were fabricated via electrospinning. We conducted AFM-based strength experiments involving a single-strand fiber and found that its elastic modulus exhibits a strong size dependency after its diameter has been reduced past a threshold size. In an attempt to explain this inverse behavior, we developed a strain gradient vibration model and used it to analyze a clamp-clamp nanofiber employed in our experimentation. As a check, our new vibration equation reverts back to the classic Euler-Bernoulli equation when strain gradient effects are neglected. To predict the onset of the inverse size-dependent response, we proposed a material length scale parameter leff and showed that at leff=78nm our theoretical predictions for the PCL nanofibers conform reasonably well to the experimental data.
出处 《工程力学》 EI CSCD 北大核心 2009年第8期228-232,共5页 Engineering Mechanics
基金 国家自然科学基金项目(50873005) 上海市重点学科建设项目(B113)
关键词 PCL纳米纤维 动力学实验 纳米纤维弹性模量 尺寸效应 应变梯度理论 PCL nanofibers dynamics experiment nanofiber elastic modulus size-dependent behavior strain gradient theory
  • 相关文献

参考文献12

  • 1Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds [J]. Tissue Engineering, 2005.11(1-2): 101-109.
  • 2Tan E P S, Lim C T. Physical properties of a single polymeric nanofiber [J]. Applied Physics Letters, 2004.84(9):1603-1605.
  • 3Tan E P S, Ng S Y, Lim C T. Tensile testing of a single ultrafine polymeric fiber [J]. Biomaterials, 2005, 26: 1453- 1456.
  • 4原波,王珺,韩平畴,林水德.聚己酸内酯纳米纤维的拉伸试验及表面表征[J].高分子材料科学与工程,2008,24(11):126-129. 被引量:4
  • 5Cuenot S, Fretigny C, Demoustier-Champagne S, Nysten B. Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy [J]. Journal of Applied Physics, 2003, 93(9): 5650-5655.
  • 6Arinstein A, Burman M, Gendelman O, Zussman E. Effect of supramolecular structure on polymer nanofibre elasticity [J]. Nature Nanotechnology, 2007, 2(1): 59- 62.
  • 7Fleck N A, Muller G M, Ashby M F, Hutchinson J W. Strain gradient plasticity - theory and experiment [J]. Acta Metallurgica et Materialia, 1994, 42(2): 475-487.
  • 8Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity [J]. Journal of the Mechanics and Physics of Solids, 1993, 41(12): 1825- 1857.
  • 9Stolken J S, Evan A G. A microbend test method for measuring the plasticity length scale [J]. Acta Metallic Materials, 1998, 46: 5109-5115.
  • 10Lam D C C, Yang F, Chong A C M, Wang J, Tong P Experiments and theory in strain gradient elasticity [J] Journal of the Mechanics and Physics of Solids, 2003, 51: 1477- 1508.

二级参考文献7

  • 1於秋霞,朱光明,梁国正,杜宗刚,宫兆合.聚ε-己内酯的合成、性能及应用进展[J].高分子材料科学与工程,2004,20(5):37-40. 被引量:38
  • 2HUANG Z M, ZHANG Y Z, KOTAKI M, et al. Compos. Sci. Technol., 2003, 63: 2223-2253.
  • 3JEUN J P, LIM Y M, NHO Y C. Journal of Industrial and Engineering Chemistry, 2005, 11 (4): 573-578.
  • 4WANG M, JIN H J, KEPI.,,AN D L, et al. Macromol., 2004, 37(18): 6856-6864.
  • 5TAN E P S, LIM C T. Review of Scientific Instruments, 2004, 75(8): 2581-2585.
  • 6BELLAN L M, KAMEOKAI J, CRAIGHEAD H G. Nanoteehnology, 2005, 16(8): 1095-1099.
  • 7CUENOT S, FRETIGNY C, DEMOUSTIER- CHAMPAGNES, etal. J. Appl Phys., 2003, 93(9): 5650-5655.

共引文献3

同被引文献24

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部