期刊文献+

BP神经网络在胸癌诊断中的应用研究

Research of Applying BP Neural Network into Breast Cancer Diagnosis
下载PDF
导出
摘要 为了提高胸癌识别的识别精度,提出了应用反向传播网络(Back Propagation,BP)建立胸癌诊断。BP网络是一种典型的多层前馈型神经网络,采用有监督学习模式,利用均方误差和梯度下降来实现对网络连接权值的修正。应用BP网络建立的诊断模型是三层网络结构,输入层的9个神经元分别对应描述细胞的特征值;隐层设置4个神经元;输出层的一个单元是对该细胞诊断的类别。数据实验结果显示诊断模型具有较高的识别精度,表明BP网络是一种有效的诊断方法。 In order to improve the diagnosis accuracy, Back Propagation (BP) network was proposed to construct the breast cancer diagnosis model. BP network is a multi layer feed forward neutral network, which taking supervised learning model. The weight of network was adjusted by mean square difference and gradient descent. The diagnosis model is a three layer neural network: the nine neuron of input layer is the feature parameters of cell; four neurons were set in hidden layer and a neuron of output is the class of diagnosed cell. Date experiment shows that diagnosis model has a high distinguish accuracy and the BP algorithm is a valid method.
作者 李蓉 刘一
出处 《微计算机信息》 2009年第23期199-200,194,共3页 Control & Automation
基金 北京市属高等学校人才强教计划资助项目(PHR200906210) 北京市教育委员会科研基地建设项目(KM200810037001) 北京市教育委员会科技计划项目(KM200810037001)
关键词 神经元 反向传播 隐层 特征参量 权值 neuron back propagation hidden layer feature parameters weight
  • 相关文献

参考文献4

二级参考文献16

  • 1阎平凡 张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2003..
  • 2MARTIN T Hagan, HOWARD B. Demuth, MARK Beale. Neural Network Design[M]. Beijing: China Machine Press, CITIC PUBLISHING HOUSE, 2002.
  • 3FADIA Binti Lazim, NORALIZA Hamzah, PAUZIAH Mohd Arsad. Application Of ANN Power System Fault Analysis[A].Shah Alam, Malaysia[C]. IEEE SCORED, 2002. 269-273.
  • 4ADNAN Amin, WATHIQ Mansoor. Recogion of Printed Arabic Text using Neural Networks[C]. Ulm: IEEE IRDAR, 1997.612-615.
  • 5章毓晋.数字图像处理和分析[M].清华大学出版社,1999..
  • 6Picard, R.W., Synthetic emotion, Computer Graphics and Applications,IEEE, Volume: 20, Issue: 1, Jan.-Feb. 2000, Pages:52-53.
  • 7Irfan A. Essa, Coding, Analysis, Interpretation and Recognition of Facial Expression http:∥www.google.com.
  • 8Heng Cao, Qin Jin, Yinglian Xie, Facial Expression Data Analysis Project Report for 15781Machine Learning Nov. 30th, 2000.
  • 9M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning, The RPROP algorithm, Proc. of the IEEE Int.Conf. On Neural Networks, San Fransisco, 1993.
  • 10Baykal N., Erkmen A.M.. Resilient backpropagation for RBF networks,Knowledge -Based Intelligent Engineering Systems and Allied Technologies, 2000. Proc. of the Fourth International Conference, Volume:2, Pages: 624 - 627.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部