期刊文献+

低能等效理论下扭度为4的离壳光子光锥波函数

Off-Shell Twist-4 Light-Cone Photon Wave Function in the Low-Energy Effective Theory
原文传递
导出
摘要 从光子通过夸克-反夸克非局域流到真空的跃迁振幅σΠμ出发,利用Lorentz分解将光子光锥波函数gγ3(u,P2)分离出来.在低能等效理论框架下求出了该波函数的解析表达式,并分析了波函数随着夸克动量份额u变化的行为.同时,得到了正反夸克矢量流与虚光子的耦合常数Gγ(P2)的表达式.结果表明,不同虚度下的波函数关于变换u→u对称(u=1-u),并且在端点u=0和u=1时不为零.耦合常数Gγ(P2)在P2=0时为零,保证了非局域夸克矢量流与波函数退耦,因此P2=0时的实光子波函数没有实际的物理效应. Starting with the transition amplitude of a photon to the vacuum through the non-local quark-antiquark current, the light-cone photon wave function gγ3 (u,P^2) is singled out from the Lorentz decomposition. Its analytic expression is obtained in the framework of the quantum chromodynamics (QCD) low-energy effective theory, and its behavior and trend with respect to the fraction (u) of the quark momentum are analyzed. The coupling constant, Gy(P^2), of the quark-antiquark vector current to the vir- tual photon state is also obtained. The wave functions corresponding to different virtuality are symmetric with the transformation u→u^-(u^-=1-u) and they are not zero at the end pointsu=0 and u=1. The real photon wave function according to P^2= 0 has no physical meaning, since the coupling constant Gγ(P^2) vanishes at P^2 =0 which guarantees that the non-local vector quark current is decoupled from the wave function.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2009年第4期414-416,共3页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(10775105) 北京谱仪合作组研究基金项目
关键词 量子色动力学 低能等效理论 光子光锥波函数 quantum chromodynamics low energy effective theory light-cone photon wave function
  • 相关文献

参考文献10

  • 1Radyushkin A V. Sculling Limil of Deeply Virtual Compton Scauering[J]. PhysLett B,1996,380(3 4) :417 425.
  • 2Radyushkin A V,Ruskov R. QCD Sum Rule Calculation of γγ→π^0 Transition Form Factor[J]. Phys Lett B, 1996,374(1-3) : 173-180.
  • 3Aliev T M,Ozpineci A,Savci M. Radiative (Phi→ fo (980) Gamma) Decay in Light-Cone QCD Sum Rules [J]. Phys Lett B,2002,527(3):193-198.
  • 4Eilam G, Halperin I, Mendel R R. Radiative Decay B →lvγ in the Light-Cone QCI) Approach[J]. Phys Lett B,1995,361(1 -4):137 -145.
  • 5Ball P,Braun V M,Kivel N. Photon Distribution Amplitudes in QCD[J]. Nucl Phys B ,2003,649(1-2) :263- 296.
  • 6Yu R, l.iu J P, Zhu K. Off-Shell Photon Light-Cone Wave Funclions of Odd Chirality in the Effective Low- Energy Theory[J]. Phys Rev D, 2006,73(4) :45002.
  • 7Braun V M, Filyanov I B. Conformal Invariance and Pion Wave Functions of Nonleading Twist[J]. Z Phys C,1990,48(2):239 -247.
  • 8Dorokhov A E, Broniowski W, Arriola E R. Photon DistribulionAmpliludes and l.ight-Cone Wave Functions in Chiral Quark Models[J]. Phys Rev D,2006,74(4) : 54023.
  • 9Zhu K, I.iu J P, Yu R. Oif-Shell Photon I.ongitudinalLighI-Cone Wave Funclion al Leading Twist[J]. lnt J Mod Phys E, 2006,15 ( 4 ) ; 889-898.
  • 10Ball P, Braun V M. p Meson I.ight-Cone Distribution Amplitudes of l.eading Twist Reexamined [J]. Phys Rev D, 1996,54(3) :2182-2193.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部