期刊文献+

冲击压缩下纯铝中微孔洞塌陷的数值模拟 被引量:1

Numerical Simulation of Micro Void Collapse in the Pure Aluminum under the Shock Compression
原文传递
导出
摘要 由于实验中无法观察材料的孔洞在受冲击加载时的变形过程,本文对纯铝中孔洞的变形过程进行了数值模拟.采用了3种材料模型:双线性模型、塑性随动模型和应变率相关塑性模型,分别模拟了它们在冲击压缩下内部微孔洞的塌陷,并对结果作了详细的比较.结果表明:基体材料模型为双线性模型时,孔洞在冲击压缩下会出现射流现象,应变率的变化和材料的硬化方式不影响孔洞的变形;模型为应变率相关塑性模型时,孔洞在冲击压缩下不会出现射流现象,孔洞的变形与当前应变率和应变率历史相关;模型为塑性随动模型时,孔洞在压缩到某一时刻体积不会进一步缩小,孔洞周围单元会因失效而被删除,孔洞反而有变大的趋势,并且用这种模型模拟孔洞变形时,硬化系数会对孔洞变形有影响.通过对使用3种模型计算结果的比较,可以确定影响孔洞变形的主要因素. Because the deformation process of voids inside the material can not be observed in dynamic shock experiments, the micro void deformation in pure aluminum is simulated under the shock compression by supposing three matrix material models, including the bilinear model, the plasticity kinematic model and the strain rate-dependent plasticity model. The contracting results indicate that: If the matrix material is the bilinear model, the fluidic phenomenon will be displayed in the compressing void, and the change of strain rate and the hardening style of the material will not affect the deformation of the void. If the matrix material is rate-dependent plasticity model, the fluidic phenomenon will not appear in the compressing voids, and the deformation of the voids is dependent on the present strain rate and the strain rate history. If the matrix material is plasticity kinematic model, the void volume will not decrease any more when it reaches a critical size. As the units around the void will be deleted due to its failure, the void will be bigger instead. The void deformation will also be affected by the hardening coefficient in this situation. By comparing the three computing results with different material models, the main factor of void deformation will be determined.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2009年第4期455-459,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(10876014) 冲击波物理与爆轰物理重点实验室基金资助项目(9140C6701010701)
关键词 双线性模型 塑性随动模型 应变率相关塑性模型 孔洞塌陷 bilinear model plasticity kinematic model rate-dependent plasticity model void collapse
  • 相关文献

参考文献10

  • 1Cinlala M J, Berdloud I., Horz F. Ejection-Velocity Distributions from Impacts inlo Coarse- Grained Sand [J]. Meteoritics & Flanetary Sci, 1999,34:605-623.
  • 2Barnouin-Jha O S, Cintala M J, Crawford D A. Investigating the Effects of Shock Duration and Grain Size on Ejecta[C]//Proc 33th Lunar and Planetary Sci Conf. Houston : Texas, 2002 : 1738.
  • 3Belak J. On the Nucleation and Growth of Voids at High Strain-Rates [J]. Journal of Computer-Aided Malerials Design, 1998,5:193- 206.
  • 4Zurek A K, Thissell W R, Trujillo C P,et al. Damage Evolulion in Ductile Metals[J]. LosAlamos Science, 2003,28:111- 113.
  • 5Worswick M J, Pick R J. Void Growth and Coalescence during High Velocily Impact[J]. Mechanics ofMaterials, 1995,19 : 293-309.
  • 6Carroll M M, Holt A C. Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials[J]. J Appl Phys,1972,43: 1626-1636.
  • 7Ortiz M, Molinari A. Elect of Strain Hardening and Rate Sensitivity on the Dynamic Growth of a Void in a Plastic Material[J]. J Appl Mech,1992,59:48-53.
  • 8Cortes R. Dynamic Growth of Microvoids under Combined Hydrostatic and Deviatoric Stresses[J]. Int J Solids Structures, 1992,29A: 1637-1645.
  • 9Cortes R. The Growth of Microvoids under Intense DynamicLoading[J]. lnt J Solids Structures, 1992, 29B: 1339-1350.
  • 10Curran D R, Seaman I.,Shockey D A. Dynamic Failure of Solids [J ]. Physics Reports, 1987, 147 ( 5-6 ) : 253- 388.

同被引文献13

  • 1王永刚,刘宏伟,贺红亮.强冲击载荷下纯铝中微孔洞长大行为[J].兵工学报,2009,30(S2):125-129. 被引量:1
  • 2祁美兰,贺红亮,王永刚,晏石林.动态冲击下纯铝中微损伤演化的仿真研究[J].振动与冲击,2007,26(8):133-135. 被引量:3
  • 3SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture[J]. J Appl Phys, 1976, 47(11) : 4814 - 4824.
  • 4WU X Y, RAMESH K T, WRIGHT T W. The dynamic growth of a single void in a visco-plastic material under transient hydrostatic loading[J]. J Mech Phys Solids, 2003, 51 : 1 - 26.
  • 5TSZENG T C. Quasistatic and dynamic growth of sub-microscale spherical voids[J]. Mech Mater, 2009, 41: 584- 598.
  • 6KAY G. Failure modeling of titanium 6AI - 4V and aluminum 2024-T3 with the Johnson-Cook material model[R]. US department of Transportation, Federal Aviation Administration, 2003.
  • 7卢剑锋.冲击载荷作用下材料和结构力学行为有限元模拟[D].硕士论文.北京:清华大学,2003.
  • 8ZHANG X M, LI H J, LI H Z, et al. Dynamic property evaluation of aluminum alloy 2519A by split Hopkinson pressure ba[J]. Trans Nonferrous Met Soc China, 2008, 18: 1-5.
  • 9ZHANG J, FAN Z, WANG Y Q, et al. Microstructural development of AI - 15wt. % Mg2Si in situ composite with mischmetal addition [J]. Materials Science and Engineering, 2000, 281: 104- 112.
  • 10TULER F R, BUTCHER B M. A criterion for the time dependence of dynamic fracture[J]. J Fract Mech, 1968, 4(4): 431 -437.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部