摘要
首先研究了独立同分布场合的中心极限定理以及切尔诺夫界,然后由这两个方法来估计n个随机变量和的尾部概率。在两种常见概率分布下随机变量和的尾部概率估算结果表明,利用中心极限定理,当随机变量个数n足够大时,可得到较准确的值;采用切尔诺夫界,虽然可以求出尾部概率的上界,但与真实值之间存在一定的误差。因此,若要用切尔诺夫不等式得到一个更加紧凑的界,须对切尔诺夫界作必要的修正。
Firstly, the central limit theorem for i. i. d ( independent and identically distributed) random variables and Chernoff bound are reviewed, with which the tail probability of n i. i.d. random variables is calculated. Results of the tail probability obtained under two common probability distributions suggest that central limit theorem can provide relatively precise values on condition that n is sufficiently large, while there always exist certain errors between the upper bound of the tail probability acquired by Chernoff bound and the exact value. Consequently, in order to obtain a tighter bound for the tail probability with Chernoff inequality, it's necessary to modify the Chernoff bound.
出处
《电讯技术》
北大核心
2009年第5期1-4,共4页
Telecommunication Engineering
基金
东南大学移动通信国家重点实验室开放研究课题(W200704)
关键词
数字通信
尾部概率
中心极限定理
大偏差理论
切尔诺夫界
digital communication
tail probability
central limit theorem
large deviations theory
Chernoff bound