期刊文献+

Mn掺杂浓度对Mn:MgAl_2O_4电子结构和光学性质的影响 被引量:1

Influence of Mn Ion Doping Concentration on Electronic Structure and Optical Properties of Mn:MgAl_2O_4
下载PDF
导出
摘要 采用密度泛函理论(DFT)的平面波超软赝势(PW-USP)和广义梯度近似(GGA)对不同锰离子掺杂浓度的掺杂镁铝尖晶石晶体Mg1-xMnxAl2O4(x=0、0.125、0.5)的晶体结构、电子结构和光学性质进行了计算。解释了锰离子掺杂浓度使晶格常数变化的微观机制;分析了锰离子掺杂浓度对电子结构和光学系数的影响。结果表明,锰离子掺杂浓度的增加使掺杂晶体的带隙降低,价带变窄,杂质能级展宽。掺杂晶体的导带对掺杂浓度的变化较为敏感。锰掺杂使可见光区吸收增大,且掺杂浓度越高可见光区光学吸收越强,起吸收边越向长波方向移动,即发生红移,与实验结果一致。 The lattice and electronic structure as well as optical properties of Mg1-xMnxAl2O4 (x = 0,0. 125, 0. 5) are investigated using the pseudo-potential plane-waves approach based on density functional theory, coupled with the generalized gradient approximation. The microscopic mechanism is attempted for changes in the lattice constants due to the doping concentration of Mn ion. The effects of doping concentration on the electronic structure along with optical properties are analyzed. The results show that the band gaps decrease, the valence band becomes narrow, and the doped impurity energy level widens as the Mn ion doping concentration increases. The Mn ion doping concentration exerts a significant effect on the conductive band width. The absorption intensity in the visible range increases, and the absorptional edge shifts to the long wavelength side, (i. e. , red shift), as the Mn ion doping concentration increases.
机构地区 东北大学理学院
出处 《材料导报》 EI CAS CSCD 北大核心 2009年第16期1-4,共4页 Materials Reports
基金 国家教育部国际合作春晖计划项目(Z2005-21005)
关键词 MGAL2O4 锰掺杂浓度 DFT 电子结构 光学性质 MgAl2O4, Mn ion doping concentration, DFT, electronic structure, optical properties
  • 相关文献

参考文献11

  • 1Izumi K, Miyazaki S, Yoshida S, et al. Optical properties of 3d transition-metal-doped MgAl2O4 spinels[J].Phys Rev B, 2007, (76):075111.
  • 2Gritsyna V T, Afanasyev-Charkin I V, Kobyakov V A, et al. Neutron irradiation effects in magnesium-aluminate spinel doped with transition metals[J]. J Nuclear Mater, 9.000, (283-287) : 927.
  • 3Yurnasheva K V, Denisov I A, Posnov N N, et al. Excited state absorption and passive Q-switch performance of Co doped oxide erystals[J].J Alloys Compd, 2002, (341) : 366.
  • 4Wang Xiaojun, Jia Dongdong, Yen W M. Mn^2+ activated green, yellow, and red long persistent phosphors[J].J Luminescence, 2003, (102-103) : 34.
  • 5Jouini A, Satoa H, Yoshikawaa A, et al. Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel[J].J Crystal Growth, 2006, (287) : 313.
  • 6Ayana Tomita, Tokushi Sato, Kensuke Tanaka, et ak Luminescence channels of manganese-doped spinel[J].J Luminescence, 2004, (109) : 19.
  • 7Segall M D, Lindan P L D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J].J Phys Condensed Matter, 2002,14: 2717.
  • 8Perdew J P, Burke S, Ernzerhof M. Generalized gradient approximation made simple [ J ]. Phys Rev Lett, 1996, 77 : 3865.
  • 9Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990,41 : 7892.
  • 10Sawada H. An electron-density residual study of magsium aluminum-oxide spinel[J].Mater Res Bull, 1995, (30) :341.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部