期刊文献+

双组分互穿网络复合吸水材料的黏弹性研究 被引量:3

Study of Viscoelasticity about Binary Interpenetrating Networks Water Swelling Material
下载PDF
导出
摘要 通过乳液聚合制备了具有分子互穿网络结构的吸水材料(WIPN)。应用RS600流变仪研究了吸水材料(WIPN)吸水后的黏弹性及吸水倍率对黏弹性的影响。动态研究表明,吸水材料的固体属性远大于液体属性,弹性模量G′的数量级为104Pa,而黏性模量G″仅在102~103Pa之间;吸水倍率升高,由于交联分子链的弹性减弱,G′、G″均降低;随温度升高,G′平缓降低,G″出现上升拐点,吸水倍率越高,拐点出现得越晚,说明在较高吸水倍率下,聚合物分子链处于紧绷状态,需要较高的能量才能发生应变。稳态蠕变恢复研究表明,材料弹性好,蠕变阶段不易变形,恢复能力强;吸水倍率越高,变形能力越强,残余应变越大。 The water swelling material(WIPN) with molecule interpenetrating networks structure is prepared by emulsion polymerization. The RS600 rheometer is applied to study the viscoelasticity of WIPN and the effect of water absorption rate by theology method. The results of dynamic research indicate that the solid property of containing water WIPN is more than the liquid's. The G′ is more than 10^4Pa, while the G″ is only between 10^2Pa and 10^3Pa. Both G′ and G″ are decreased for the flexihility's weakening of crosslinked molecule chain with the increasing of water absorption rate. As the temperature increases, the value of G′ decreases gently, the value of G″ appears an ascending inflexion. Water absorption rate is higher, the temperature of inflexion appeared is higher. It explains that it needs more energy for strain to take place tight polymer molecule chain. It is difficult for WIPN strain to take place during creep phase. The higher water absorption rate is, the greater retrieve strain is.
出处 《材料导报》 EI CAS CSCD 北大核心 2009年第16期33-36,共4页 Materials Reports
关键词 互穿网络 吸水材料 黏弹性 interpenetrating networks, water swelling material, viscoelasticity
  • 相关文献

参考文献3

二级参考文献24

  • 1肖建斌,王永祥.NR/SBR吸水膨胀橡胶的性能研究[J].青岛科技大学学报(自然科学版),2004,25(6):507-509. 被引量:8
  • 2刘岚,向洁,罗远芳,贾德民.吸水膨胀橡胶的研究进展[J].高分子通报,2006(9):23-29. 被引量:38
  • 3Vondracek P. , Lopour P. , Sulc J.. Rubbers Swellable with Water and Aqueous and the Method for Producing the Same, US 5384370 [ P], 1995.
  • 4CameronG. G., QureshiM. Y.. Makromol. Chem.[J], 1986, 187(12):2763--2774.
  • 5Cameron G. G. , Sarmouk K.. Makromol. Chem. [J] , 1990, 191(1 ) : 17--23.
  • 6Haddadiasl V., Burford R. P., Garnett J. L.. Radiat. Phys. Chem. [J], 1995, 45:191--198.
  • 7Haddadiasl V., Burford R. P., Garnett J. L.. Radiat. Phys. Chem. [J], 1996, 47:907-912.
  • 8Abbasi F. , Mirzadeh H. , Katbab A. A.. J. Appl. Polym. Sci. [J], 2002, 85 (9) : 1825--1831.
  • 9Fanta, G.F., Burr, R.C. and Russell, C.R., J. Appl. Polym. Sci., 1967, 11: 457.
  • 10Kiatkamjornwong, S. and Phunchareon, P., J. Appl. Polym. Sci., 1999, 72:1349.

共引文献11

同被引文献36

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部