期刊文献+

基于K均值聚类和多核SVM的微钙化簇检测 被引量:1

Microcalcification Detection Based on K-means Cluster and Multiple Kernel Support Vector Machine
下载PDF
导出
摘要 考虑到乳腺微钙化簇样本分布不平衡以及特征的多样性,提出了基于K均值聚类的多核支持向量机。即首先将训练样本聚合成K类,对每类样本加不同的惩罚因子,以平衡样本分布不平衡。其次针对样本特征多样性,将核函数做组合,得到多核支持向量分类器。使用主动反馈学习的方法来得到稳定的训练样本。实验结果表明,本方法与单核SVM及多核SVM相比,检对率至少可以提高两个百分点。 Considering the unbalanced distribution of the training samples and the multiformity of the features. A multiple kernel SVM based on K-means cluster algorithm was proposed. Firstly, training samples was clustered into K classes, different penalty factors were used for each class in order to balance the contributions of each class. Secondly, the multiple kernel support vector machine was proposed for diversity of the features. The stabilized training sample was obtained via active feedback learning. The result show that the detection rate can be improved at least 2 percent by the proposed method, compared with the single kernel SVM and the multiple kernel SVM.
出处 《计算机科学》 CSCD 北大核心 2009年第8期231-233,共3页 Computer Science
基金 国家自然科学基金(60603098) 陕西省教育厅科学研究计划项目(07JK381)资助
关键词 K均值聚类 多核支持向量机 微钙化簇 主动反馈学习 K-means cluster,Multiple kernel SVM,Microcalcification, Active feedback learning
  • 相关文献

参考文献11

  • 1Thangavel K,Kaman M, Sivakumar R, et al. Automatic Detection of Microcalcification in Mammograms-A Review[J]. International Journal on Graphics Vision and Image. Processing, 2005,5(5):31-61.
  • 2Bazzani A,et al. A SVM classifier to separate false signals from microcalcifications in digital mammograms[J]. Phys. Med. Biol, 2001,46 (6):1651-1663.
  • 3Papadopoulos A, Fotiadis D I, Likas A. Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines[J]. Artificial Intelligence in Medicine, 2004,34(2) : 141-150.
  • 4Wei Liyang, Yang Yongyi, et al. A Study on Several Machinelearning Methods for Classification of Malignant and Benign Clustered Microcalcifications [J]. March. IEEE Transaction on Medical Imaging, 2005,4(3) : 371-380.
  • 5El-Naqa I, et al. A support vector machine aproach for detection of microcalcifications[J]. IEEE Transactions on Medical Imaging, 2002,21 (12) .. 1552-1563.
  • 6Li Ying,Jiang Jianmin. Combination of SVM Knowledge for Microcalcification Detection in Digital Mammograms[C]//IDEAL, 2004,LNCS 3177. 2004:359-365.
  • 7Rose C, Turi D, Williams A, et al. Digital Database for Screening Mammography[DB/OL]. http: //marathon, csee. usf. edu/ Mammography/Database. html, 1998.
  • 8Wang Jiaqi, Wu Xindong, Zhang Chengqi. Support Vector Machines Based on K-means Clustering for Real-time Business Intelligence Systems[J]. International Journal of Business Intelligence and Data Mining, 2005,1 (1) : 54-64.
  • 9Li Maokuan , Cheng Yusheng, Zhao Honghai. Unlabeled Data Classification via Support Vector Machines and k-means Clustering[C]//Proceedings of the International Conference on Computer Graphics, Imaging and Visualization. 2004 : 183-186.
  • 10Lanckriet G, et al. Learning the Kernel Matrix with Semi-definite Programming[J]. Journal of Machine Learning Research, 2004 : 27-72.

同被引文献19

  • 1贺文强,苗果园,张永清,高志强.山西省小麦品质区划研究[J].山西师范大学学报(自然科学版),2006,20(2):82-84. 被引量:9
  • 2潘洁,戴廷波,姜东,朱艳,曹卫星.基于气候因子效应的冬小麦籽粒蛋白质含量预测模型[J].中国农业科学,2005,38(4):684-691. 被引量:16
  • 3王绍中,李春喜,章练红,崔转玲.小麦品质生态及品质区划研究 Ⅰ.河南省小麦品质现状及地区差异[J].河南农业科学,1995,24(10):3-10. 被引量:38
  • 4Han Jiawei,Kamber M.Data mining concepts and techniques[M].范明,孟小峰,译.2版.北京:机械工业出版社,2007.
  • 5Makrehchi M, Kamel M S.Text classification using small num- ber of features[C]//Pemer P, Imiya A.Proc of the 4th Int'l Conf on Machine Learning and Data Mining in Pattern Recognition,2005:580-589.
  • 6Daniel C, Triboy E.Changes in wheat protein aggregation during grain development: effects of temperatures and water stress[J].Eu- ropean Journal of Agronomy,2002,16:1-12.
  • 7Bradley P S, Fayyad U M.Refining initial points for k-means clustering[C]//Proc of the 15th Intemet Conf on Machine Learn- ing.San Francisco: Morgan Kaufmann Publishers, 1998: 91-99.
  • 8中华人民共和国国家标准.GB/T17892-1999优质小麦强筋小麦[S].北京:国家质量技术监督局,1999.
  • 9中华人民共和国国家标准.GB/T17893-1999优质小麦弱筋小麦[S].北京:国家质量技术监督局,1999.
  • 10王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报,2007,35(8):1577-1581. 被引量:61

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部