期刊文献+

基于局部和全局的特征提取算法及在人脸识别中的应用 被引量:7

Feature Extraction Algorithm Based on Locality and Globality and its Application in Face Recognition
下载PDF
导出
摘要 提出了一种基于局部和全局特征的特征提取算法。该算法不仅能保持数据集的局部性,同时也考虑了数据集的全局性,使得降维后的数据既能保持邻近关系,又能从整体上较好地重构和展现。PCA()能较好地展现原数据集,LPP能保持局部邻近关系,算法结合了这两个算法的思想,但由于LPP没有考虑类别信息,故先对LPP进行改进,给出了一种有监督的局部保持投影算法,使得提出的算法能更加有利于分类问题。通过人脸识别实验,验证了算法的正确性和有效性。 A feature extraction algorithm based on locality and globality was proposed,which on one hand takes the locality of the data into consideration, on the other hand takes the globality of data into account. Consequently, the data after dimension reduction not only preserves the locality relationship, but also reconstructs and represents the original data perfectly. PCA (Principal Component Analysis) can represent the data nicely and LPP (Locality Preserving Projection) can preserve the locality relationship,so the algorithm just hybrid the two of them. But LPP does not utilize the classification information,so first LPP-based algorithm is improved,a supervised version is given,which results in that the algorithm is more suitable for classification task. Experiments in face recognition validate the correctness and effec- tiveness of the proposed algorithm.
出处 《计算机科学》 CSCD 北大核心 2009年第8期285-287,共3页 Computer Science
关键词 特征提取 局部性 全局性 LPP 主成分分析算法 人脸识别 Feature extraction, Locality, Globality, LPP, PCA, Face recognition
  • 相关文献

参考文献7

  • 1Turk M, Pentland A. Eigenfaces for recognition [J]. Cognitive Neurosci, 1991,3(1) : 71-86.
  • 2Belhumeur P N, Kriegman D J. Eigenfaces vs. fisheriaces: recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19: 711-720.
  • 3Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduetion[J]. Science, 2000,290:2319-2323.
  • 4Rowies S, Saul L. Nonliear dimensionality reduction by locally linear embedding[J]. Science, 2000,290: 2323-2326.
  • 5Belkin M, Niyogo P. Laplaeian eigenmaaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6) : 1373-1396.
  • 6He X, Niyogi P. Locality preserving projeetions[M]. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2004.
  • 7Zhao Haitao. Combining labeled and unlabeled data with graph embedding[J]. Neurocomputing, 2006,69 : 2385-2389.

同被引文献55

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部