期刊文献+

树干毕赤酵母木糖还原酶Lysine270定点突变的理性设计 被引量:1

Rational Design of Site-Directed Mutagenesis of Lysine270 in Pichia stipitis Xylose Reductase
下载PDF
导出
摘要 Lysine270是树干毕赤酵母木糖还原酶(PsXR)与还原型烟酰胺腺嘌呤二核苷磷酸(NADPH)或还原型烟酰胺腺嘌呤二核苷酸(NADH)形成结合口袋的关键氨基酸之一.为研究该位点对PsXR辅酶偏好性的影响,用其它19种氨基酸替代Lysine270,构建19种不同的木糖还原酶(XR)突变子,利用同源建模和分子对接的方法评价不同突变子与NAD+或NADP+之间的相互作用,并从中选择突变子K270R和K270N进行实验验证.突变基因及野生基因用异丙基-β-d-硫代半乳糖苷(IPTG)在大肠杆菌内进行诱导表达,经纯化后进行酶学性质研究.结果发现:K270R突变使得XR与NADP+的结合能力降低,米氏常数Km由0.025mmol/L升高到0.050mmol/L;K270N突变使得XR与NADP+不能结合.实验结果亦证实,通过理性选择得到的K270N突变子的辅酶依赖性由NADPH完全逆转为NADH. Lysine270 has been found to be a key amino acid that forms the binding pocket of PsXR (Piehia stipitis xylose reduetase) with nieotinamide adenine dinucleo,Lide phosphate (NADPH) or with nieotinamide adenine dinucleotide (NADH). In order to investigate the effect of Lysine270 on the PsXR coenzyme specificity, 19 XR mu- tants were produced by substituting 19 amino acids tot Lysine270, and the interaction between XR mutants and NAD^+ or NADP ~ was assessed by means of homology modeling and molecular docking. Then, K270R and K270N mutants were chosen to perform the bioinformatic analysis. After being induced by isopropyhhio-β-d-galactoside (IPTG) in Escherichia coli (E. coli), the xylose reduetases of wild type and mutagenesis were purified and finally used to investigate the enzymatic properties. The results show that ( 1 ) K270R mutagenesis reduces the binding capability of XR with NADP^+ and results in an increase of Michaelis constant from 0. 025 mmol/L to 0. 050 mmol/L; (2) K270N mutagenesis makes XR bind with NAD^+ only; and (3) the coenzyme dependence of rationally-designed K270N completely reverses from NADPH to NADH.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第6期79-83,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省自然科学基金资助项目(06300199)
关键词 木糖还原酶 定点突变 辅酶偏好性 生物信息学 xylose reductase site-directed mutagencsis coenzyme specificity bioinformation
  • 相关文献

参考文献11

  • 1Lin Y, Tanaka S. Ethanol fermentation from biomass resources : current state and prospects [ J ]. Applied Microbiology Biotechnology ,2006,69 ( 6 ) :627-642.
  • 2Niqam J N. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis [ J ]. Journal of Biotechnology,2001,87( 1 ) : 17-27.
  • 3Wang Y, Shi W L, Liu X Y, et al. Establishment of a xylose metabolic pathwayin an industrial of Saccharomyces cerevisiae [ J]. Biotechnology Letters,2004,26( 1 ) :885-890.
  • 4Toivari M H, Aristidou A, Rouhonen L, et al. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase ( XKS1 ) and oxygen availability [ J ]. Metabolic Engineering, 2001,3 ( 3 ) : 236- 249.
  • 5Jeppsson M, Traff K, Johansson B, et al. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae [ J]. FEMS Yeast Research, 2003,3 (2) : 167-175.
  • 6Petschacher B, Leitqeb S, Kavanagh K L, et al. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography [ J ]. Biochemical Journal, 2005, 385 ( Pt 1 ) :75-83.
  • 7Jeppsson M, Benqtsson O, Franke K,et al. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae [ J]. Biotehnology and Bioengineering, 2006,93 ( 4 ) : 665- 673.
  • 8Wang Jing-fang, Wei Dong-qing, Lin Ying, et al. Insights from modeling the 3D structure of NAD (P) H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP [ J ]. Biochemical and Biophysical Research Communications ,2007,359:323-329.
  • 9Kostrzynska magdalena, Sopher coralie, Lee hung, et al. Mutational analysis of the role of the conserved Lysine 270 in the Pichia stipitis xylose reductase [ J ]. FEMS Microbiology Letters, 1998,159 : 107-112.
  • 10Watanabe S,Pack S P, Abu Saleh A, et al. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae [ J ]. Bioscience Biotechnology and Biochemistry, 2007,71(5) :1365-1369.

同被引文献34

  • 1Piubelli L, Aliverti A, Arakaki AK, et al. Competition between C-terminal tyrosine and nicotinamide modulates pyridine nucleotide affinity and specificity in plant ferre-doxin-NADP reductase. J Biol Chem, 2000, 275: 10472-丨 0476.
  • 2Petschacher B, Lleitgeb S, Kavanagh KL, et al. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. J Biochem, 2005,385: 75-83.
  • 3Vass SO, Jarrom D, Wilson WR, et al. E. coli NfsA: an alternative nitroreductase for prodrug activation gene therapy in combination with CB1954. Br J Cancer, 2009, 100: 1903-1911.
  • 4Brinkmann-Chen S, Flock T, Cahn JK, et al. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. Proc Natl Acad Sci USA, 2013, 110: 10946-10951.
  • 5Lerchner A, Jarasch A, Meining W, et al. Crystallographic analysis and structure-guided engineering of NA-DPH-dependent Ralstonia sp. Alcohol dehydrogenase toward NADH cosubstrate specificity. Biotechnol. Bioeng, 2013,110: 2803-2814.
  • 6Robinson R,Franceschini S, Fedkenheuer M, et al. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA. BBA-Proteins Proteom, 2014, 1844: 778-784.
  • 7Zhang R Z, Xu Y, Sun Y, et al. Ser67Asp/His68Asp substitution in carbonyl reductase from Candida parapsilosis switchs the coenzyme specificity and the enantioselectivity of ketone reduction. Appl Environ Microb, 2009, 75: 2176-2183.
  • 8Katzberg M,Skorupa Parachin N, Gorwa-Granslund MF, et al. Engineering cofactor preference of ketone reducing biocatalysts: a mutagenesis study on a 丫-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Int J Mol Sci, 2010,11: 1735-1758.
  • 9Hoelsch K, Suhrer I, Heusel M, et al. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Appl Microbiol Biot,2013,97: 2473-2481.
  • 10Ryuichi T, Bunzo M, Shigeyuki K, et al. Structure-based conversion of the coenzyme requirement of a short-chain dehydrogenase/reductase, J Biol Chem,2014, doi: 10.1074/jbc.Ml 14.585661.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部